Solid-State Lithium Sulfur Batteries Operated at 37 °C with Composites of Nanostructured Li7La3Zr2O12/Carbon Foam and Polymer

被引:440
作者
Tao, Xinyong [1 ,2 ]
Liu, Yayuan [2 ]
Liu, Wei [2 ]
Zhou, Guangmin [2 ]
Zhao, Jie [2 ]
Lin, Dingchang [2 ]
Zu, Chenxi [2 ]
Sheng, Ouwei [1 ]
Zhang, Wenkui [1 ]
Lee, Hyun-Wook [2 ]
Cui, Yi [2 ,3 ]
机构
[1] Zhejiang Univ Technol, Coll Mat Sci & Engn, Hangzhou 310014, Zhejiang, Peoples R China
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[3] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
基金
中国国家自然科学基金;
关键词
Lithium sulfur batteries; Li7La3Zr2O12; solid state electrglytes; nanoparticles; carbon foam; ELECTROCHEMICAL PERFORMANCE; SUPERIONIC CONDUCTORS; IONIC-CONDUCTIVITY; CRYSTAL-STRUCTURE; METAL ANODES; ELECTROLYTE; SURFACE; DESIGN; CELLS; GLASS;
D O I
10.1021/acs.nanolett.7b00221
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An all solid-state lithium-ion battery with high energy density and high safety is a promising solution for a next-generation energy storage system. High interface resistance of the electrodes and poor ion conductivity of solid-state electrolytes are two main challenges for solid-state batteries, which require operation at elevated temperatures of 60-90 degrees C. Herein; we report the facile synthesis of Al3+/Nb5+ codoped Cubit Li2La3Zr2O12 (LLZO) nanoparticles and LLZO nano particle decorated porous carbon foam (LLZO@C) by the onestep Pechini sol-gel method. The. LLZO nanoparticle-filled poly(ethylene oxide) electrolyte shows Unproved conductivity compared with filler-free samples. The sulfur composite cathode based on LLZO@C can deliver an attractive specific capacity of >900 mAh g(-1) at the human body teniperature 37 degrees C and a high capacity of 1210 and 1556 mAh g(-1) at 50 and 70 degrees C, respectively. In addition, the solid-state Li-S batteries exhibit high Coulombic efficiency and show remarkably Stable cycling performance.
引用
收藏
页码:2967 / 2972
页数:6
相关论文
共 55 条
[1]   Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview [J].
Agrawal, R. C. ;
Pandey, G. P. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (22)
[2]   POLY(ETHYLENE OXIDE)-SILICATE INTERCALATION MATERIALS [J].
ARANDA, P ;
RUIZHITZKY, E .
CHEMISTRY OF MATERIALS, 1992, 4 (06) :1395-1403
[3]  
Bouchet R, 2013, NAT MATER, V12, P452, DOI [10.1038/NMAT3602, 10.1038/nmat3602]
[4]   Sparse Cyclic Excitations Explain the Low Ionic Conductivity of Stoichiometric Li7La3Zr2O12 [J].
Burbano, Mario ;
Carlier, Dany ;
Boucher, Florent ;
Morgan, Benjamin J. ;
Salanne, Mathieu .
PHYSICAL REVIEW LETTERS, 2016, 116 (13)
[5]   A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles [J].
Choudhury, Snehashis ;
Mangal, Rahul ;
Agrawal, Akanksha ;
Archer, Lynden A. .
NATURE COMMUNICATIONS, 2015, 6
[6]  
Chung WJ, 2013, NAT CHEM, V5, P518, DOI [10.1038/NCHEM.1624, 10.1038/nchem.1624]
[7]   Nanocomposite polymer electrolytes for lithium batteries [J].
Croce, F ;
Appetecchi, GB ;
Persi, L ;
Scrosati, B .
NATURE, 1998, 394 (6692) :456-458
[8]   Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries [J].
Fu, Kun ;
Gong, Yunhui ;
Dai, Jiaqi ;
Gong, Amy ;
Han, Xiaogang ;
Yao, Yonggang ;
Wang, Chengwei ;
Wang, Yibo ;
Chen, Yanan ;
Yan, Chaoyi ;
Li, Yiju ;
Wachsman, Eric D. ;
Hu, Liangbing .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (26) :7094-7099
[9]   All-solid-state lithium batteries with Li3PS4 glass as active material [J].
Hakari, Takashi ;
Nagao, Motohiro ;
Hayashi, Akitoshi ;
Tatsumisago, Masahiro .
JOURNAL OF POWER SOURCES, 2015, 293 :721-725
[10]  
HAN X, 2016, NAT MATER