First-order quantum phase transition in adiabatic quantum computation

被引:76
作者
Amin, M. H. S. [1 ]
Choi, V. [1 ,2 ]
机构
[1] D Wave Syst Inc, Burnaby, BC V5C 6G9, Canada
[2] Virginia Tech, Dept Comp Sci, Falls Church, VA 22043 USA
来源
PHYSICAL REVIEW A | 2009年 / 80卷 / 06期
关键词
CRITICAL-BEHAVIOR; ALGORITHM;
D O I
10.1103/PhysRevA.80.062326
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the connection between local minima in the problem Hamiltonian and first-order quantum phase transitions during adiabatic quantum computation. We demonstrate how some properties of the local minima can lead to an extremely small gap that is exponentially sensitive to the Hamiltonian parameters. Using perturbation expansion, we derive an analytical formula that cannot only predict the behavior of the gap, but also provide insight on how to controllably vary the gap size by changing the parameters. We show agreement with numerical calculations for a weighted maximum independent set problem instance.
引用
收藏
页数:5
相关论文
共 39 条
[1]   Adiabatic quantum computation is equivalent to standard quantum computation [J].
Aharonov, D ;
van Dam, W ;
Kempe, J ;
Landau, Z ;
Lloyd, S ;
Regev, O .
45TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2004, :42-51
[2]  
ALTSHULER B, ARXIV09082782
[3]   Thermally assisted adiabatic quantum computation [J].
Amin, M. H. S. ;
Love, Peter J. ;
Truncik, C. J. S. .
PHYSICAL REVIEW LETTERS, 2008, 100 (06)
[4]   Role of single-qubit decoherence time in adiabatic quantum computation [J].
Amin, M. H. S. ;
Truncik, C. J. S. ;
Averin, D. V. .
PHYSICAL REVIEW A, 2009, 80 (02)
[5]   Effect of local minima on adiabatic quantum optimization [J].
Amin, M. H. S. .
PHYSICAL REVIEW LETTERS, 2008, 100 (13)
[6]   Decoherence in adiabatic quantum computation [J].
Amin, M. H. S. ;
Averin, Dmitri V. ;
Nesteroff, James A. .
PHYSICAL REVIEW A, 2009, 79 (02)
[7]   Decoherence in a scalable adiabatic quantum computer [J].
Ashhab, S. ;
Johansson, J. R. ;
Nori, Franco .
PHYSICAL REVIEW A, 2006, 74 (05)
[8]   CRITICAL-BEHAVIOR OF M-COMPONENT MAGNETS WITH CORRELATED IMPURITIES [J].
BOYANOVSKY, D ;
CARDY, JL .
PHYSICAL REVIEW B, 1982, 26 (01) :154-170
[9]   Adiabatic quantum dynamics of a random Ising chain across its quantum critical point [J].
Caneva, Tommaso ;
Fazio, Rosario ;
Santoro, Giuseppe E. .
PHYSICAL REVIEW B, 2007, 76 (14)
[10]   Robustness of adiabatic quantum computation [J].
Childs, AM ;
Farhi, E ;
Preskill, J .
PHYSICAL REVIEW A, 2002, 65 (01) :123221-1232210