Ultrafast surface hydration dynamics and expression of protein functionality:: α-Chymotrypsin

被引:111
作者
Pal, SK [1 ]
Peon, J [1 ]
Zewail, AH [1 ]
机构
[1] CALTECH, Arthur Amos Noyes Lab Chem Phys, Lab Mol Sci, Pasadena, CA 91125 USA
关键词
D O I
10.1073/pnas.242600399
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We report studies of hydration dynamics at the surface of the enzyme protein bovine pancreatic a-chymotrypsin. The probe is the well known 1-anilinonaphthalene-8-sulfonate, which binds selectively in the native state of the protein, not the molten globule, as shown by x-ray crystallography. With femtosecond time resolution, we examined the hydration dynamics at two pHs, when the protein is physiologically in the inactive state (pH 3.6) or the active state (pH 6.7); the global structure and the binding site remain the same. The hydration correlation function, C(t), whose decay is governed by the rotational and translational motions of water molecules at the site, shows the behavior observed in this laboratory for other proteins, Subtilisin Carlsberg and Monellin, using the intrinsic amino acid tryptophan as a probe for surface hydration. However, the time scales and amplitudes vary drastically at the two pHs. For the inactive protein state, C(t) decays with an ultrafast component, close to bulk-type behavior, but 50% of the C(t) decays at a much slower rate, tau = 43 ps. In contrast, for the active state, the ultrafast component becomes dominant (90%) and the slow component changes to a faster decay, tau = 28 ps. These results indicate that in the active state water molecules in the hydration layer around the site have a high degree of mobility, whereas in the inactive state the water is more rigidly structured. For the substrate-enzyme complex, the function and dynamics at the probe site are correlated, and the relevance to the enzymatic action is clear.
引用
收藏
页码:15297 / 15302
页数:6
相关论文
共 36 条
[1]  
[Anonymous], [No title captured]
[2]  
BARRET PC, 2000, J PHYS CHEM B, V104, P9322
[3]   Molecular dynamics of water at the protein-solvent interface [J].
Bizzarri, AR ;
Cannistraro, S .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (26) :6617-6633
[4]   Free energy landscapes of encounter complexes in protein-protein association [J].
Camacho, CJ ;
Weng, ZP ;
Vajda, S ;
DeLisi, C .
BIOPHYSICAL JOURNAL, 1999, 76 (03) :1166-1178
[5]   Hydration structure of the α-chymotrypsin substrate binding pocket:: the impact of constrained geometry [J].
Carey, C ;
Cheng, YK ;
Rossky, PJ .
CHEMICAL PHYSICS, 2000, 258 (2-3) :415-425
[6]   Physicochemical and physiological mechanisms for the effects of food on drug absorption: The role of lipids and pH [J].
Charman, WN ;
Porter, CJH ;
Mithani, S ;
Dressman, JB .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1997, 86 (03) :269-282
[7]  
DETOMA RP, 1976, J AM CHEM SOC, V98, P5001, DOI 10.1021/ja00432a048
[8]  
ELSAESSER T, 1991, ANNU REV PHYS CHEM, V42, P83
[9]  
Haugland R.P., 1967, CONFORM BIOPOLYM, V1, P321
[10]   Structural and dynamic properties of water around acetylcholinesterase [J].
Henchman, RH ;
McCammon, JA .
PROTEIN SCIENCE, 2002, 11 (09) :2080-2090