Multiple conformations of full-length p53 detected with single-molecule fluorescence resonance energy transfer

被引:88
作者
Huang, Fang [1 ]
Rajagopalan, Sridharan [1 ]
Settanni, Giovanni [1 ]
Marsh, Richard J. [2 ]
Armoogum, Daven A. [2 ]
Nicolaou, Nick [2 ]
Bain, Angus J. [2 ]
Lerner, Eitan [3 ]
Haas, Elisha [3 ]
Ying, Liming [4 ,5 ]
Fersht, Alan R. [1 ]
机构
[1] MRC, Ctr Prot Engn, Cambridge CB2 0QH, England
[2] UCL, Dept Phys & Astron, London WC1E 6BT, England
[3] Bar Ilan Univ, Goodman Fac life Sci, IL-52900 Ramat Gan, Israel
[4] Univ London Imperial Coll Sci Technol & Med, Chem Biol Ctr, London SW7 2AZ, England
[5] Univ London Imperial Coll Sci Technol & Med, Natl Heart & Lung Inst, London SW7 2AZ, England
基金
英国生物技术与生命科学研究理事会; 以色列科学基金会;
关键词
natively disordered; domain-domain interaction; quaternary structure; FRET; time-resolved; TUMOR-SUPPRESSOR P53; INTRAMOLECULAR DISTANCE DISTRIBUTIONS; CRYSTAL-STRUCTURE; CORE DOMAIN; DYNAMICS; FRET; FLEXIBILITY; FLUCTUATIONS; MECHANISM; ENSEMBLE;
D O I
10.1073/pnas.0909644106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The tumor suppressor p53 is a member of the emerging class of proteins that have both folded and intrinsically disordered domains, which are a challenge to structural biology. Its N-terminal domain (NTD) is linked to a folded core domain, which has a disordered link to the folded tetramerization domain, which is followed by a disordered C-terminal domain. The quaternary structure of human p53 has been solved by a combination of NMR spectroscopy, electron microscopy, and small-angle X-ray scattering (SAXS), and the NTD ensemble structure has been solved by NMR and SAXS. The murine p53 is reported to have a different quaternary structure, with the N and C termini interacting. Here, we used single-molecule FRET (SM-FRET) and ensemble FRET to investigate the conformational dynamics of the NTD of p53 in isolation and in the context of tetrameric full-length p53 (flp53). Our results showed that the isolated NTD was extended in solution with a strong preference for residues 66-86 forming a polyproline II conformation. The NTD associated weakly with the DNA binding domain of p53, but not the C termini. We detected multiple conformations in flp53 that were likely to result from the interactions of NTD with the DNA binding domain of each monomeric p53. Overall, the SM-FRET results, in addition to corroborating the previous ensemble findings, enabled the identification of the existence of multiple conformations of p53, which are often averaged and neglected in conventional ensemble techniques. Our study exemplifies the usefulness of SM-FRET in exploring the dynamic landscape of multimeric proteins that contain regions of unstructured domains.
引用
收藏
页码:20758 / 20763
页数:6
相关论文
共 48 条
[1]   New biarsenical Ligands and tetracysteine motifs for protein labeling in vitro and in vivo: Synthesis and biological applications [J].
Adams, SR ;
Campbell, RE ;
Gross, LA ;
Martin, BR ;
Walkup, GK ;
Yao, Y ;
Llopis, J ;
Tsien, RY .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (21) :6063-6076
[2]   Single-molecule tracking of mRNA exiting from RNA polymerase II [J].
Andrecka, Joanna ;
Lewis, Robert ;
Brueckner, Florian ;
Lehmann, Elisabeth ;
Cramer, Patrick ;
Michaelis, Jens .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (01) :135-140
[3]   SIMULTANEOUS DETERMINATION OF INTRAMOLECULAR DISTANCE DISTRIBUTIONS AND CONFORMATIONAL DYNAMICS BY GLOBAL ANALYSIS OF ENERGY-TRANSFER MEASUREMENTS [J].
BEECHEM, JM ;
HAAS, E .
BIOPHYSICAL JOURNAL, 1989, 55 (06) :1225-1236
[4]   Effect of flexibility and cis residues in single-molecule FRET studies of polyproline [J].
Best, Robert B. ;
Merchant, Kusai A. ;
Gopich, Irina V. ;
Schuler, Benjamin ;
Bax, Ad ;
Eaton, William A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (48) :18964-18969
[5]   CRYSTAL-STRUCTURE OF A P53 TUMOR-SUPPRESSOR DNA COMPLEX - UNDERSTANDING TUMORIGENIC MUTATIONS [J].
CHO, YJ ;
GORINA, S ;
JEFFREY, PD ;
PAVLETICH, NP .
SCIENCE, 1994, 265 (5170) :346-355
[6]   REFINED SOLUTION STRUCTURE OF THE OLIGOMERIZATION DOMAIN OF THE TUMOR-SUPPRESSOR P53 [J].
CLORE, GM ;
ERNST, J ;
CLUBB, R ;
OMICHINSKI, JG ;
KENNEDY, WMP ;
SAKAGUCHI, K ;
APPELLA, E ;
GRONENBORN, AM .
NATURE STRUCTURAL BIOLOGY, 1995, 2 (04) :321-333
[7]   The N-terminal domain of p53 is natively unfolded [J].
Dawson, R ;
Müller, L ;
Dehner, A ;
Klein, C ;
Kessler, H ;
Buchner, J .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 332 (05) :1131-1141
[8]   Single-molecule protein folding: Diffusion fluorescence resonance energy transfer studies of the denaturation of chymotrypsin inhibitor 2 [J].
Deniz, AA ;
Laurence, TA ;
Beligere, GS ;
Dahan, M ;
Martin, AB ;
Chemla, DS ;
Dawson, PE ;
Schultz, PG ;
Weiss, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (10) :5179-5184
[9]   Proton-powered subunit rotation in single membrane-bound F0F1-ATP synthase [J].
Diez, M ;
Zimmermann, B ;
Börsch, M ;
König, M ;
Schweinberger, E ;
Steigmiller, S ;
Reuter, R ;
Felekyan, S ;
Kudryavtsev, V ;
Seidel, CAM ;
Gräber, P .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2004, 11 (02) :135-141
[10]   Probing polyproline structure and dynamics by photoinduced electron transfer provides evidence for deviations from a regular polyproline type II helix [J].
Doose, Soeren ;
Neuweiler, Hannes ;
Barsch, Hannes ;
Sauer, Markus .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (44) :17400-17405