A note on computing bonus-malus insurance premiums using a hierarchical Bayesian framework

被引:5
作者
Gomez-Deniz, E.
Vazquez-Polo, F. J. [1 ]
Perez, J. M.
机构
[1] Univ Las Palmas de Gran Canaria, Dept Quantitat Methods, Las Palmas Gran Canaria 35017, Spain
[2] Univ Granada, Dept Quantitat Methods, E-18071 Granada, Spain
关键词
bonus-malus; premium calculation principle; robustness;
D O I
10.1007/BF02607056
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we consider statistical problems arising from applications concerning insurance-premium calculation. We describe an integrated set of Bayesian tools for modelling bonus-malus systems (BMS) for insurance premiums. This paper describes a bonus-malus system (BMS) applicable to insurance claims procedures, constructed using a hierarchical Bayesian model. We then address notions and techniques of robust Bayesian analysis in the context of problems arising in BMS.
引用
收藏
页码:345 / 359
页数:15
相关论文
共 21 条
[1]  
[Anonymous], 1994, Test
[2]  
[Anonymous], STAT DECISION THEORY
[3]  
Berger HU, 2000, IMECHE CONF TRANS, V2000, P1
[4]   ROBUST BAYESIAN-ANALYSIS UNDER GENERALIZED MOMENTS CONDITIONS [J].
BETRO, B ;
RUGGERI, F ;
MECZARSKI, M .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1994, 41 (03) :257-266
[5]  
Buhlmann H., 1970, MATH METHODS RISK TH
[6]   A GAMMA-MINIMAX RESULT IN CREDIBILITY THEORY [J].
EICHENAUER, J ;
LEHN, J ;
RETTIG, S .
INSURANCE MATHEMATICS & ECONOMICS, 1988, 7 (01) :49-57
[7]  
Frangos N. E., 2001, ASTIN BULL, V31, P1, DOI DOI 10.2143/AST.31.1.991
[8]   Measuring sensitivity in a bonus-malus system [J].
Gómez, E ;
Hernández, A ;
Pérez, JM ;
Vázquez-Polo, FJ .
INSURANCE MATHEMATICS & ECONOMICS, 2002, 31 (01) :105-113
[9]  
GOMEZ E, 2000, J ROYAL STAT SOC D, V49, P241
[10]  
GOOVAERTS M, 1987, SURVEYS ACTUARIAL ST, V4, P19