Cranial visceral afferent pathways through the nucleus of the solitary tract to caudal ventrolateral medulla or paraventricular hypothalamus: Target-specific synaptic reliability and convergence patterns

被引:123
作者
Bailey, Timothy W. [1 ]
Hermes, Sam M.
Andresen, Michael C.
Aicher, Sue A.
机构
[1] Oregon Hlth & Sci Univ, Dept Physiol & Pharmacol, Portland, OR 97239 USA
[2] Oregon Hlth & Sci Univ, Inst Neurol Sci, Portland, OR 97239 USA
关键词
paraventricular; brainstem; hypothalamus; autonomic; sensory; baroreceptor;
D O I
10.1523/JNEUROSCI.2044-06.2006
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Cranial visceral afferents activate central pathways that mediate systemic homeostatic processes. Afferent information arrives in the brainstem nucleus of the solitary tract (NTS) and is relayed to other CNS sites for integration into autonomic responses and complex behaviors. Little is known about the organization or nature of processing within NTS. We injected fluorescent retrograde tracers into two nuclei to identify neurons that project to sites involved in autonomic regulation: the caudal ventrolateral medulla (CVLM) or paraventricular nucleus of the hypothalamus (PVN). We found distinct differences in synaptic connections and performance in the afferent path through NTS to these neurons. Anatomical studies using confocal and electron microscopy found prominent, primary afferent synapses directly on somata and dendrites of CVLM-projecting NTS neurons identifying them as second-order neurons. In brainstem slices, afferent activation evoked large, constant latency EPSCs in CVLM-projecting NTS neurons that were consistent with the precise timing and rare failures of monosynaptic contacts on second-order neurons. In contrast, most PVN-projecting NTS neurons lacked direct afferent input and responded to afferent stimuli with highly variable, intermittently failing synaptic responses, indicating polysynaptic pathways to higher-order neurons. The afferent-evoked EPSCs in most PVN-projecting NTS neurons were smaller and unreliable but also often included multiple, convergent polysynaptic responses not observed in CVLM-projecting neurons. A few PVN-projecting NTS neurons had monosynaptic EPSC characteristics. Together, we found that cranial visceral afferent pathways are structured distinctly within NTS depending on the projection target. Such, intra-NTS pathway architecture will substantially impact performance of autonomic or neuroendocrine reflex arcs.
引用
收藏
页码:11893 / 11902
页数:10
相关论文
共 48 条
[1]   Anatomical substrates for baroreflex sympathoinhibition in the rat [J].
Aicher, SA ;
Milner, TA ;
Pickel, VM ;
Reis, DJ .
BRAIN RESEARCH BULLETIN, 2000, 51 (02) :107-110
[2]   The N-methyl-D-aspartate (NMDA) receptor is postsynaptic to substance P-containing axon terminals in the rat superficial dorsal horn [J].
Aicher, SA ;
Sharma, S ;
Cheng, PY ;
Pickel, VM .
BRAIN RESEARCH, 1997, 772 (1-2) :71-81
[3]   N-methyl-D-aspartate receptors are present in vagal afferents and their dendritic targets in the nucleus tractus solitarius [J].
Aicher, SA ;
Sharma, S ;
Pickel, VM .
NEUROSCIENCE, 1999, 91 (01) :119-132
[4]  
Aicher SA, 1996, J COMP NEUROL, V373, P62, DOI 10.1002/(SICI)1096-9861(19960909)373:1<62::AID-CNE6>3.0.CO
[5]  
2-B
[6]   NUCLEUS-TRACTUS-SOLITARIUS EFFERENT TERMINALS SYNAPSE ON NEURONS IN THE CAUDAL VENTROLATERAL MEDULLA THAT PROJECT TO THE ROSTRAL VENTROLATERAL MEDULLA [J].
AICHER, SA ;
KURUCZ, OS ;
REIS, DJ ;
MILNER, TA .
BRAIN RESEARCH, 1995, 693 (1-2) :51-63
[7]   SYNAPSES BETWEEN SLOWLY ADAPTING LUNG STRETCH-RECEPTOR AFFERENTS AND INSPIRATORY BETA-NEURONS IN THE NUCLEUS OF THE SOLITARY TRACT OF CATS - A LIGHT AND ELECTRON-MICROSCOPIC ANALYSIS [J].
ANDERS, K ;
OHNDORF, W ;
DERMIETZEL, R ;
RICHTER, DW .
JOURNAL OF COMPARATIVE NEUROLOGY, 1993, 335 (02) :163-172
[8]   NUCLEUS-TRACTUS-SOLITARIUS - GATEWAY TO NEURAL CIRCULATORY CONTROL [J].
ANDRESEN, MC ;
KUNZE, DL .
ANNUAL REVIEW OF PHYSIOLOGY, 1994, 56 :93-116
[9]   Vasopressin inhibits glutamate release via two distinct modes in the brainstem [J].
Bailey, Timothy W. ;
Jin, Young-Ho ;
Doyle, Mark W. ;
Smith, Stephen M. ;
Andresen, Michael C. .
JOURNAL OF NEUROSCIENCE, 2006, 26 (23) :6131-6142
[10]   Synaptic and membrane properties of neurons in the dorsomedial hypothalamus [J].
Bailey, TW ;
Nicol, GD ;
Schild, JH ;
DiMicco, JA .
BRAIN RESEARCH, 2003, 985 (02) :150-162