CsgD, a regulator of curli and cellulose synthesis, also regulates serine hydroxymethyltransferase synthesis in Escherichia coli K-12

被引:55
作者
Chirwa, NT [1 ]
Herrington, MB [1 ]
机构
[1] Concordia Univ, Dept Biol, Montreal, PQ H3G 1M8, Canada
来源
MICROBIOLOGY-SGM | 2003年 / 149卷
关键词
D O I
10.1099/mic.0.25841-0
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The homologous CsgD and AgfD proteins are members of the FixJ/UhpA/LuxR family and are proposed to regulate curli (thin aggregative fibres) and cellulose production by Escherichia coli and Salmonella enterica serovar Typhimurium, respectively. A plasmid containing part of the csgD gene was isolated during a screen for multicopy suppressors of glycine auxotrophy caused by deleting the folA gene in E coli. The sequence of the plasmid suggests it encodes a chimaeric protein. Plasmids containing the intact csgD or agfD gene also caused suppression. Cells transformed with the recombinant plasmids contained higher serine hydroxymethyltransferase (SHMT) activity than controls. The increase could also be monitored by assaying beta-galactosidase activity from a reporter strain with part of the SHMT gene, glyA, fused to lacZ. The increase in SHMT activity was sufficient to correct the glycine auxotrophy of strains lacking folA. The recombinant plasmids also enabled K-12 strains that are not curli-proficient to make curli. Curlin, the major component of curli, contains more glycine than normal E coli proteins. It is proposed that CsgD upregulates glyA to facilitate synthesis of curli. It is suggested that recombinant plasmids produce enough CsgD or chimaeric protein to titrate out a ligand that switches CsgD into its inactive form. As a result, sufficient active CsgD is present to activate genes in its regulon. It is concluded that CsgD increases expression of the glyA gene either directly or indirectly.
引用
收藏
页码:525 / 535
页数:11
相关论文
共 73 条
[1]   CONSTRUCTION OF A FOL MUTANT STRAIN OF ESCHERICHIA-COLI FOR USE IN DIHYDROFOLATE-REDUCTASE MUTAGENESIS EXPERIMENTS [J].
AHRWEILER, PM ;
FRIEDEN, C .
JOURNAL OF BACTERIOLOGY, 1988, 170 (07) :3301-3304
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   ATG VECTORS FOR REGULATED HIGH-LEVEL EXPRESSION OF CLONED GENES IN ESCHERICHIA-COLI [J].
AMANN, E ;
BROSIUS, J .
GENE, 1985, 40 (2-3) :183-190
[4]   SIGMA(S)-DEPENDENT GROWTH-PHASE INDUCTION OF THE CSGBA PROMOTER IN ESCHERICHIA-COLI CAN BE ACHIEVED IN-VIVO BY SIGMA(70) IN THE ABSENCE OF THE NUCLEOID-ASSOCIATED PROTEIN H-NS [J].
ARNQVIST, A ;
OLSEN, A ;
NORMARK, S .
MOLECULAR MICROBIOLOGY, 1994, 13 (06) :1021-1032
[5]   Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation [J].
Austin, JW ;
Sanders, G ;
Kay, WW ;
Collinson, SK .
FEMS MICROBIOLOGY LETTERS, 1998, 162 (02) :295-301
[6]   Structure of the Escherichia coli response regulator NarL [J].
Baikalov, I ;
Schroder, I ;
KaczorGrzeskowiak, M ;
Grzeskowiak, K ;
Gunsalus, RP ;
Dickerson, RE .
BIOCHEMISTRY, 1996, 35 (34) :11053-11061
[7]  
BenNasr A, 1996, MOL MICROBIOL, V20, P927
[8]   Expression of and cytokine activation by Escherichia coli curli fibers in human sepsis [J].
Bian, Z ;
Brauner, A ;
Li, YH ;
Normark, S .
JOURNAL OF INFECTIOUS DISEASES, 2000, 181 (02) :602-612
[9]   MlrA, a novel regulator of curli (AgF) and extracellular matrix synthesis by Escherichia coli and Salmonella enterica serovar Typhimurium [J].
Brown, PK ;
Dozois, CM ;
Nickerson, CA ;
Zuppardo, A ;
Terlonge, J ;
Curtiss, R .
MOLECULAR MICROBIOLOGY, 2001, 41 (02) :349-363
[10]   PROTEIN MEASUREMENT USING BICINCHONINIC ACID - ELIMINATION OF INTERFERING SUBSTANCES [J].
BROWN, RE ;
JARVIS, KL ;
HYLAND, KJ .
ANALYTICAL BIOCHEMISTRY, 1989, 180 (01) :136-139