Bayesian statistical methods for genetic association studies

被引:312
作者
Stephens, Matthew [1 ,2 ]
Balding, David J. [3 ]
机构
[1] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Human Genet, Chicago, IL 60637 USA
[3] Univ London Imperial Coll Sci Technol & Med, Dept Epidemiol & Publ Hlth, London W2 1PG, England
基金
美国国家卫生研究院;
关键词
GENOME-WIDE ASSOCIATION; FALSE DISCOVERY; SELECTION; METAANALYSES;
D O I
10.1038/nrg2615
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Bayesian statistical methods have recently made great inroads into many areas of science, and this advance is now extending to the assessment of association between genetic variants and disease or other phenotypes. We review these methods, focusing on single-SNP tests in genome-wide association studies. We discuss the advantages of the Bayesian approach over classical (frequentist) approaches in this setting and provide a tutorial on basic analysis steps, including practical guidelines for appropriate prior specification. We demonstrate the use of Bayesian methods for fine mapping in candidate regions, discuss meta-analyses and provide guidance for refereeing manuscripts that contain Bayesian analyses.
引用
收藏
页码:681 / 690
页数:10
相关论文
共 47 条
[1]   Measuring departures from Hardy-Weinberg: a Markov chain Monte Carlo method for estimating the inbreeding coefficient [J].
Ayres, KL ;
Balding, DJ .
HEREDITY, 1998, 80 (6) :769-777
[2]   A tutorial on statistical methods for population association studies [J].
Balding, David J. .
NATURE REVIEWS GENETICS, 2006, 7 (10) :781-791
[3]   The Bayesian revolution in genetics [J].
Beaumont, MA ;
Rannala, B .
NATURE REVIEWS GENETICS, 2004, 5 (04) :251-261
[4]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[5]   Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls [J].
Burton, Paul R. ;
Clayton, David G. ;
Cardon, Lon R. ;
Craddock, Nick ;
Deloukas, Panos ;
Duncanson, Audrey ;
Kwiatkowski, Dominic P. ;
McCarthy, Mark I. ;
Ouwehand, Willem H. ;
Samani, Nilesh J. ;
Todd, John A. ;
Donnelly, Peter ;
Barrett, Jeffrey C. ;
Davison, Dan ;
Easton, Doug ;
Evans, David ;
Leung, Hin-Tak ;
Marchini, Jonathan L. ;
Morris, Andrew P. ;
Spencer, Chris C. A. ;
Tobin, Martin D. ;
Attwood, Antony P. ;
Boorman, James P. ;
Cant, Barbara ;
Everson, Ursula ;
Hussey, Judith M. ;
Jolley, Jennifer D. ;
Knight, Alexandra S. ;
Koch, Kerstin ;
Meech, Elizabeth ;
Nutland, Sarah ;
Prowse, Christopher V. ;
Stevens, Helen E. ;
Taylor, Niall C. ;
Walters, Graham R. ;
Walker, Neil M. ;
Watkins, Nicholas A. ;
Winzer, Thilo ;
Jones, Richard W. ;
McArdle, Wendy L. ;
Ring, Susan M. ;
Strachan, David P. ;
Pembrey, Marcus ;
Breen, Gerome ;
St Clair, David ;
Caesar, Sian ;
Gordon-Smith, Katherine ;
Jones, Lisa ;
Fraser, Christine ;
Green, Elain K. .
NATURE, 2007, 447 (7145) :661-678
[6]   FitSNPs: highly differentially expressed genes are more likely to have variants associated with disease [J].
Chen, Rong ;
Morgan, Alex A. ;
Dudley, Joel ;
Deshpande, Tarangini ;
Li, Li ;
Kodama, Keiichi ;
Chiang, Annie P. ;
Butte, Atul J. .
GENOME BIOLOGY, 2008, 9 (12)
[7]   Trend tests for case-control studies of genetic markers: Power, sample size and robustness [J].
Freidlin, B ;
Zheng, G ;
Li, ZH ;
Gastwirth, JL .
HUMAN HEREDITY, 2002, 53 (03) :146-152
[8]   Bayesian Variable and Model Selection Methods for Genetic Association Studies [J].
Fridley, Brooke L. .
GENETIC EPIDEMIOLOGY, 2009, 33 (01) :27-37
[9]   THE BAYES NONBAYES COMPROMISE - A BRIEF REVIEW [J].
GOOD, IJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (419) :597-606
[10]   Shifting paradigm of association studies: Value of rare single-nucleotide polymorphisms [J].
Gorlov, Ivan P. ;
Gorlova, Olga Y. ;
Sunyaev, Shamil R. ;
Spitz, Margaret R. ;
Amos, Christopher I. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2008, 82 (01) :100-112