A unified approach to linearization variance estimation from survey data after imputation for item nonresponse

被引:36
作者
Kim, Jae Kwang [1 ]
Rao, J. N. K. [2 ]
机构
[1] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
[2] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Composite imputation; Fractional imputation; Imputed estimator; Multiple imputation; Regression imputation;
D O I
10.1093/biomet/asp041
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Variance estimation after imputation is an important practical problem in survey sampling. When deterministic imputation or stochastic imputation is used, we show that the variance of the imputed estimator can be consistently estimated by a unifying linearize and reverse approach. We provide some applications of the approach to regression imputation, fractional categorical imputation, multiple imputation and composite imputation. Results from a simulation study, under a factorial structure for the sampling, response and imputation mechanisms, show that the proposed linearization variance estimator performs well in terms of relative bias, assuming a missing at random response mechanism.
引用
收藏
页码:917 / 932
页数:16
相关论文
共 15 条
[1]  
[Anonymous], 1987, Multiple Imputation for Nonresponse in Surveys
[2]  
[Anonymous], 1992, SURV METHODOL
[3]  
[Anonymous], 2018, Generalized linear models
[4]   Jackknife variance estimation for nearest-neighbor imputation [J].
Chen, JH ;
Shao, J .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (453) :260-269
[5]  
DAVISON A. C., 2007, J STAT, V23, P371
[6]  
Deville J.-C., 1994, J OFFICIAL STAT STOC, V10, P381
[7]  
Fay R.E., 1992, Proceedings of the Survey Research Methods Section, American Statistical Association, P227
[8]   Learning as peripheral participation in communities of practice: a reassessment of key concepts in workplace learning [J].
Fuller, A ;
Hodkinson, H ;
Hodkinson, P ;
Unwin, L .
BRITISH EDUCATIONAL RESEARCH JOURNAL, 2005, 31 (01) :49-68
[9]  
Haziza D, 2009, HANDB STAT, V29A, P215, DOI 10.1016/S0169-7161(08)00010-2
[10]   On the bias of the multiple-imputation variance estimator in survey sampling [J].
Kim, Jae Kwang ;
Brick, J. Michael ;
Fuller, Wayne A. ;
Kalton, Graham .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2006, 68 :509-521