Skeleton pruning by contour partitioning with discrete curve evolution

被引:297
作者
Bai, Xiang [1 ]
Latecki, Longin Jan
Liu, Wen-Yu
机构
[1] Huazhong Univ Sci & Technol, Dept Elect & Informat Engn, N1 Hall,D425,Luoyu Rd 1043, Wuhan 430074, Hubei, Peoples R China
[2] Temple Univ, Dept Comp & Informat Sci, Philadelphia, PA 19122 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
skeleton; skeleton pruning; contour partition; discrete curve evolution;
D O I
10.1109/TPAMI.2007.59
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce a new skeleton pruning method based on contour partitioning. Any contour partition can be used, but the partitions obtained by Discrete Curve Evolution ( DCE) yield excellent results. The theoretical properties and the experiments presented demonstrate that obtained skeletons are in accord with human visual perception and stable, even in the presence of significant noise and shape variations, and have the same topology as the original skeletons. In particular, we have proven that the proposed approach never produces spurious branches, which are common when using the known skeleton pruning methods. Moreover, the proposed pruning method does not displace the skeleton points. Consequently, all skeleton points are centers of maximal disks. Again, many existing methods displace skeleton points in order to produces pruned skeletons.
引用
收藏
页码:449 / 462
页数:14
相关论文
共 41 条
[1]   EUCLIDEAN SKELETON VIA CENTER-OF-MAXIMAL-DISC EXTRACTION [J].
ARCELLI, C ;
DIBAJA, GS .
IMAGE AND VISION COMPUTING, 1993, 11 (03) :163-173
[2]   A WIDTH-INDEPENDENT FAST THINNING ALGORITHM [J].
ARCELLI, C ;
DIBAJA, GS .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1985, 7 (04) :463-474
[3]  
ASLAN C, 2005, P INT C COMP VIS
[4]   BIOLOGICAL SHAPE AND VISUAL SCIENCE .1. [J].
BLUM, H .
JOURNAL OF THEORETICAL BIOLOGY, 1973, 38 (02) :205-287
[5]   DISTANCE TRANSFORMATIONS IN DIGITAL IMAGES [J].
BORGEFORS, G .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1986, 34 (03) :344-371
[6]   Hierarchical decomposition of multiscale skeletons [J].
Borgefors, G ;
Ramella, G ;
di Baja, GS .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (11) :1296-1312
[7]   CONTINUOUS SKELETON COMPUTATION BY VORONOI DIAGRAM [J].
BRANDT, JW ;
ALGAZI, VR .
CVGIP-IMAGE UNDERSTANDING, 1992, 55 (03) :329-338
[8]  
CHIN FYL, 1995, P 6 INT S ALG COMP, P382
[9]   Mathematical theory of medial axis transform [J].
Choi, HI ;
Choi, SW ;
Moon, HP .
PACIFIC JOURNAL OF MATHEMATICS, 1997, 181 (01) :57-88
[10]   Extraction of the Euclidean skeleton based on a connectivity criterion [J].
Choi, WP ;
Lam, KM ;
Siu, WC .
PATTERN RECOGNITION, 2003, 36 (03) :721-729