Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell

被引:171
作者
Deng, Qian [1 ]
Li, Xinyang [1 ,2 ]
Zuo, Jiane [1 ]
Ling, Alison [3 ]
Logan, Bruce E. [4 ]
机构
[1] Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China
[2] Wuhan Safety & Environm Protect Res Inst, Wuhan 430081, Peoples R China
[3] Univ Minnesota, Dept Civil Engn, Minneapolis, MN 55414 USA
[4] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA
关键词
Activated carbon fiber felt; Non-catalyst cathode; Upflow microbial fuel cell; ELECTRICITY-GENERATION; MEDIATOR-LESS; HARVESTING ELECTRICITY; INTERNAL RESISTANCE; OXYGEN REDUCTION; PERFORMANCE; ELECTRODES; CHALLENGES; CATALYSTS; GLUCOSE;
D O I
10.1016/j.jpowsour.2009.08.092
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An activated carbon fiber felt (ACFF) cathode lacking metal catalysts is used in an upflow microbial fuel cell (UMFC). The maximum power density with the ACFF cathode is 315 mW m(-2), compared to lower values with cathodes made of plain carbon paper (67 mW m(-2)), carbon felt (77 mW m(-2)), or platinum-coated carbon paper (124 mW m(-2), 0.2 mg-Pt cm(-2)). The addition of platinum to the ACFF cathode (0.2 mg-Pt cm(-2)) increases the maximum power density to 391 mW m(-2). Power production is further increased to 784 mW m(-2) by increasing the cathode surface area and shaping it into a tubular form. With ACFF cutting into granules, the maximum power is 481 mW m(-2) (0.5 cm granules), and 667 mW m(-2) (1.0 cm granules). These results show that ACFF cathodes lacking metal catalysts can be used to substantially increase power production in UMFC compared to traditional materials lacking a precious metal catalyst. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1130 / 1135
页数:6
相关论文
共 37 条
[11]   Operational parameters affecting the performance of a mediator-less microbial fuel cell [J].
Gil, GC ;
Chang, IS ;
Kim, BH ;
Kim, M ;
Jang, JK ;
Park, HS ;
Kim, HJ .
BIOSENSORS & BIOELECTRONICS, 2003, 18 (04) :327-334
[12]   Graphite electrodes as electron donors for anaerobic respiration [J].
Gregory, KB ;
Bond, DR ;
Lovley, DR .
ENVIRONMENTAL MICROBIOLOGY, 2004, 6 (06) :596-604
[13]   Electricity generation from artificial wastewater using an upflow microbial fuel cell [J].
He, Z ;
Minteer, SD ;
Angenent, LT .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (14) :5262-5267
[14]   An upflow microbial fuel cell with an interior cathode: Assessment of the internal resistance by impedance Spectroscopy [J].
He, Zhen ;
Wagner, Norbert ;
Minteer, Shelley D. ;
Angenent, Largus T. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (17) :5212-5217
[15]   Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments [J].
Holmes, DE ;
Bond, DR ;
O'Neill, RA ;
Reimers, CE ;
Tender, LR ;
Lovley, DR .
MICROBIAL ECOLOGY, 2004, 48 (02) :178-190
[16]   Construction and operation of a novel mediator- and membrane-less microbial fuel cell [J].
Jang, JK ;
Pham, TH ;
Chang, IS ;
Kang, KH ;
Moon, H ;
Cho, KS ;
Kim, BH .
PROCESS BIOCHEMISTRY, 2004, 39 (08) :1007-1012
[17]   A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciense [J].
Kim, HJ ;
Park, HS ;
Hyun, MS ;
Chang, IS ;
Kim, M ;
Kim, BH .
ENZYME AND MICROBIAL TECHNOLOGY, 2002, 30 (02) :145-152
[18]   Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells [J].
Kim, Jung Rae ;
Cheng, Shaoan ;
Oh, Sang-Eun ;
Logan, Bruce E. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (03) :1004-1009
[19]   Composition and distribution of internal resistance in three types of microbial fuel cells [J].
Liang, Peng ;
Huang, Xia ;
Fan, Ming-Zhi ;
Cao, Xiao-Xin ;
Wang, Cheng .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2007, 77 (03) :551-558
[20]   Extracting hydrogen electricity from renewable resources [J].
Logan, BE .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2004, 38 (09) :160A-167A