Extrapancreatic incretin receptors modulate glucose homeostasis, body weight, and energy expenditure

被引:239
作者
Hansotia, Tanya
Maida, Adriano
Flock, Grace
Yamada, Yuichiro
Tsukiyama, Katsushi
Seino, Yutaka
Drucker, Daniel. J.
机构
[1] Univ Toronto, Mt Sinai Hosp, Samuel Lunenfeld Res Inst, Banting & Best Diabet Ctr,Dept Med & Lab Med, Toronto, ON M5G 1X5, Canada
[2] Univ Toronto, Mt Sinai Hosp, Samuel Lunenfeld Res Inst, Banting & Best Diabet Ctr,Dept Pathobiol, Toronto, ON M5G 1X5, Canada
[3] Kyoto Univ, Grad Sch Med, Kyoto, Japan
关键词
D O I
10.1172/JCI25483
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) control glucose homeostasis through well-defined actions on the islet beta cell via stimulation of insulin secretion and preservation and expansion of beta cell mass. We examined the importance of endogenous incretin receptors for control of glucose homeostasis through analysis of Glplr(-/-), Gipr(-/-), and double incretin receptor knockout (DIRKO) mice fed a high-fat (HF) diet. DIRKO mice failed to upregulate levels of plasma insulin, pancreatic insulin mRNA transcripts, and insulin content following several months of HF feeding. Both single incretin receptor knockout and DIRKO mice exhibited resistance to diet-induced obesity, preservation of insulin sensitivity, and increased energy expenditure associated with increased locomotor activity. Moreover, plasma levels of plasminogen activator inhibitor-1 and resistin failed to increase significantly in DIRKO mice after HF feeding, and the GIP receptor agonist [D-Ala(2)]GIP, but not the GLP-1 receptor agonist exendin-4, increased the levels of plasma resistin in studies of both acute and chronic administration. These findings extend our understanding of how endogenous incretin circuits regulate glucose homeostasis independent of the P cell via control of adipokine secretion and energy expenditure.
引用
收藏
页码:143 / 152
页数:10
相关论文
共 33 条
[1]   The gut and energy balance: Visceral allies in the obesity wars [J].
Badman, MK ;
Flier, JS .
SCIENCE, 2005, 307 (5717) :1909-1914
[2]   Glucagon-like peptide-1, but not glucose-dependent insulinotropic peptide, regulates fasting glycemia and nonenteral glucose clearance in mice [J].
Baggio, L ;
Kieffer, TJ ;
Drucker, DJ .
ENDOCRINOLOGY, 2000, 141 (10) :3703-3709
[3]   INCRETIN CONCEPT TODAY [J].
CREUTZFELDT, W .
DIABETOLOGIA, 1979, 16 (02) :75-85
[4]   Glucagon-like peptide-1 and the islet β-cell:: Augmentation of cell proliferation and inhibition of apoptosis [J].
Drucker, DJ .
ENDOCRINOLOGY, 2003, 144 (12) :5145-5148
[5]   Glucagon-like peptides: Regulators of cell proliferation, differentiation, and apoptosis [J].
Drucker, DJ .
MOLECULAR ENDOCRINOLOGY, 2003, 17 (02) :161-171
[6]   GLUCAGONLIKE PEPTIDE-I STIMULATES INSULIN GENE-EXPRESSION AND INCREASES CYCLIC-AMP LEVELS IN A RAT ISLET CELL-LINE [J].
DRUCKER, DJ ;
PHILIPPE, J ;
MOJSOV, S ;
CHICK, WL ;
HABENER, JF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (10) :3434-3438
[7]   GLUCAGON-LIKE PEPTIDE-I REDUCES POSTPRANDIAL GLYCEMIC EXCURSIONS IN IDDM [J].
DUPRE, J ;
BEHME, MT ;
HRAMIAK, IM ;
MCFARLANE, P ;
WILLIAMSON, MP ;
ZABEL, P ;
MCDONALD, TJ .
DIABETES, 1995, 44 (06) :626-630
[8]   Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans - Studies with the antagonist exendin 9-39 [J].
Edwards, CMB ;
Todd, JF ;
Mahmoudi, M ;
Wang, ZL ;
Wang, RM ;
Ghatei, MA ;
Bloom, SR .
DIABETES, 1999, 48 (01) :86-93
[9]   CHARACTERIZATION OF GIP(1-30) AND GTP(1-42) AS STIMULATORS OF PROINSULIN GENE-TRANSCRIPTION [J].
FEHMANN, HC ;
GOKE, B .
PEPTIDES, 1995, 16 (06) :1149-1152
[10]   Mouse pancreatic β-cells exhibit preserved glucose competence after disruption of the glucagon-like peptide-1 receptor gene [J].
Flamez, D ;
Van Breusegem, A ;
Scrocchi, LA ;
Quartier, E ;
Pipeleers, D ;
Drucker, DJ ;
Schuit, F .
DIABETES, 1998, 47 (04) :646-652