Nonoptimal Microbial Response to Antibiotics Underlies Suppressive Drug Interactions

被引:173
作者
Bollenbach, Tobias [1 ]
Quan, Selwyn [3 ]
Chait, Remy [1 ]
Kishony, Roy [1 ,2 ]
机构
[1] Harvard Univ, Sch Med, Dept Syst Biol, Boston, MA 02115 USA
[2] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Stanford Univ, Dept Chem & Syst Biol, Stanford, CA 94305 USA
基金
美国国家卫生研究院;
关键词
RIBOSOMAL-RNA SYNTHESIS; RATE-DEPENDENT CONTROL; ESCHERICHIA-COLI; GENE-EXPRESSION; GROWTH-RATE; SUBINHIBITORY CONCENTRATIONS; TRANSCRIPTIONAL MODULATION; CELL-SIZE; DNA; REPLICATION;
D O I
10.1016/j.cell.2009.10.025
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Suppressive drug interactions, in which one antibiotic can actually help bacterial cells to grow faster in the presence of another, occur between protein and DNA synthesis inhibitors. Here, we show that this suppression results from nonoptimal regulation of ribosomal genes in the presence of DNA stress. Using GFP-tagged transcription reporters in Escherichia coli, we find that ribosomal genes are not directly regulated by DNA stress, leading to an imbalance between cellular DNA and protein content. To test whether ribosomal gene expression under DNA stress is nonoptimal for growth rate, we sequentially deleted up to six of the seven ribosomal RNA operons. These synthetic manipulations of ribosomal gene expression correct the protein-DNA imbalance, lead to improved survival and growth, and completely remove the suppressive drug interaction. A simple mathematical model explains the nonoptimal regulation in different nutrient environments. These results reveal the genetic mechanism underlying an important class of suppressive drug interactions.
引用
收藏
页码:707 / 718
页数:12
相关论文
共 76 条
[1]   Construction and initial characterization of Escherichia coli strains with few or no intact chromosomal rRNA operons [J].
Asai, T ;
Condon, C ;
Voulgaris, J ;
Zaporojets, D ;
Shen, BH ;
Al-Omar, M ;
Squires, C ;
Squires, CL .
JOURNAL OF BACTERIOLOGY, 1999, 181 (12) :3803-3809
[2]   Bacterial persistence as a phenotypic switch [J].
Balaban, NQ ;
Merrin, J ;
Chait, R ;
Kowalik, L ;
Leibler, S .
SCIENCE, 2004, 305 (5690) :1622-1625
[3]   Mechanism of regulation of transcription initiation by ppGpp. II. Models for positive control based on properties of RNAP mutants and competition for RNAP [J].
Barker, MM ;
Gaal, T ;
Gourse, RL .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 305 (04) :689-702
[4]   GROWTH RATE-DEPENDENT CONTROL OF THE RRNB P1 CORE PROMOTER IN ESCHERICHIA-COLI [J].
BARTLETT, MS ;
GOURSE, RL .
JOURNAL OF BACTERIOLOGY, 1994, 176 (17) :5560-5564
[5]   The toxicity of poisons applied jointly [J].
Bliss, CI .
ANNALS OF APPLIED BIOLOGY, 1939, 26 (03) :585-615
[6]   Using microarray gene signatures to elucidate mechanisms of antibiotic action and resistance [J].
Brazas, MD ;
Hancock, REW .
DRUG DISCOVERY TODAY, 2005, 10 (18) :1245-1252
[7]  
Bremer H., 1996, Escherichia coli and Salmonella: Cellular and Molecular Biology
[8]  
Cashel M., 1996, ESCHERICHIA COLI SAL, V1, P1458
[9]   Antibiotic interactions that select against resistance [J].
Chait, Remy ;
Craney, Allison ;
Kishony, Roy .
NATURE, 2007, 446 (7136) :668-671
[10]   RIBOSOMAL-RNA OPERON MULTIPLICITY IN ESCHERICHIA-COLI AND THE PHYSIOLOGICAL IMPLICATIONS OF RRN INACTIVATION [J].
CONDON, C ;
LIVERIS, D ;
SQUIRES, C ;
SCHWARTZ, I ;
SQUIRES, CL .
JOURNAL OF BACTERIOLOGY, 1995, 177 (14) :4152-4156