ATM activates p53 by regulating MDM2 oligomerization and E3 processivity

被引:115
作者
Cheng, Qian [1 ]
Chen, Lihong [1 ]
Li, Zhenyu [1 ]
Lane, William S. [2 ]
Chen, Jiandong [1 ]
机构
[1] H Lee Moffitt Canc Ctr & Res Inst, Dept Mol Oncol, Tampa, FL 33612 USA
[2] Harvard Univ, Harvard Microchem & Prote Facil, Cambridge, MA 02138 USA
基金
美国国家卫生研究院;
关键词
MDM2; oligomerization; p53; RING domain; ubiquitination; DNA-DAMAGE; NUCLEAR EXPORT; DEPENDENT PHOSPHORYLATION; UBIQUITIN LIGASE; HUMAN CANCER; C-TERMINUS; DEGRADATION; APOPTOSIS; IDENTIFICATION; TRANSLOCATION;
D O I
10.1038/emboj.2009.294
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rapid activation of p53 by ionizing irradiation is a classic DNA damage response mediated by the ATM kinase. However, the major signalling target and mechanism that lead to p53 stabilization are unknown. We show in this report that ATM induces p53 accumulation by phosphorylating the ubiquitin E3 ligase MDM2. Multiple ATM target sites near the MDM2 RING domain function in a redundant manner to provide robust DNA damage signalling. In the absence of DNA damage, the MDM2 RING domain forms oligomers that mediate p53 poly ubiquitination and proteasomal degradation. Phosphorylation by ATM inhibits RING domain oligomerization, specifically suppressing p53 poly ubiquitination. Blocking MDM2 phosphorylation by alanine substitution of all six phosphorylation sites results in constitutive degradation of p53 after DNA damage. These observations show that ATM controls p53 stability by regulating MDM2 RING domain oligomerization and E3 ligase processivity. Promoting or disrupting E3 oligomerization may be a general mechanism by which signalling kinases regulate ubiquitination reactions, and a potential target for therapeutic intervention. The EMBO Journal (2009) 28, 3857-3867. doi: 10.1038/emboj.2009.294; Published online 8 October 2009
引用
收藏
页码:3857 / 3867
页数:11
相关论文
共 44 条
[1]  
Ashcroft M, 1999, MOL CELL BIOL, V19, P1751
[2]   Enhanced phosphorylation of p53 by ATN in response to DNA damage [J].
Banin, S ;
Moyal, L ;
Shieh, SY ;
Taya, Y ;
Anderson, CW ;
Chessa, L ;
Smorodinsky, NI ;
Prives, C ;
Reiss, Y ;
Shiloh, Y ;
Ziv, Y .
SCIENCE, 1998, 281 (5383) :1674-1677
[3]   Mutations in Fbx4 inhibit dimerization of the SCFFbx4 ligase and contribute to cyclin D1 overexpression in human cancer [J].
Barbash, Olena ;
Zamfirova, Petia ;
Lin, Douglas I. ;
Chen, Xiangmei ;
Yang, Ke ;
Nakagawa, Hiroshi ;
Lu, Fengmin ;
Rustgi, Anil K. ;
Diehl, J. Alan .
CANCER CELL, 2008, 14 (01) :68-78
[4]   DNA damage induced p53 stabilization: no indication for an involvement of p53 phosphorylation [J].
Blattner, C ;
Tobiasch, E ;
Litfen, M ;
Rahmsdorf, HJ ;
Herrlich, P .
ONCOGENE, 1999, 18 (09) :1723-1732
[5]   Comparative study of the p53-mdm2 and p53-MDMX interfaces [J].
Böttger, V ;
Böttger, A ;
Garcia-Echeverria, C ;
Ramos, YFM ;
van der Eb, AJ ;
Jochemsen, AG ;
Lane, DP .
ONCOGENE, 1999, 18 (01) :189-199
[6]   A UbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination [J].
Brzovic, PS ;
Lissounov, A ;
Christensen, DE ;
Hoyt, DW ;
Klevit, RE .
MOLECULAR CELL, 2006, 21 (06) :873-880
[7]   Disruption of p53 in human cancer cells alters the responses to therapeutic agents [J].
Bunz, F ;
Hwang, PM ;
Torrance, C ;
Waldman, T ;
Zhang, YG ;
Dillehay, L ;
Williams, J ;
Lengauer, C ;
Kinzler, KW ;
Vogelstein, B .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 104 (03) :263-269
[8]   Cell type- and promoter-specific roles of Ser18 phosphorylation in regulating p53 responses [J].
Chao, C ;
Hergenhahn, M ;
Kaeser, MD ;
Wu, ZQ ;
Saito, S ;
Iggo, R ;
Hollstein, M ;
Appella, E ;
Xu, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (42) :41028-41033
[9]   Ser18 and 23 phosphorylation is required for p53-dependent apoptosis and tumor suppression [J].
Chao, Connie ;
Herr, Deron ;
Chun, Jerold ;
Xu, Yang .
EMBO JOURNAL, 2006, 25 (11) :2615-2622
[10]  
Chehab NH, 2000, GENE DEV, V14, P278