Common themes and problems of bioenergetics and voltage-gated proton channels

被引:29
作者
DeCoursey, TE [1 ]
Cherny, VV [1 ]
机构
[1] Rush Presbyterian St Lukes Med Ctr, Dept Physiol & Mol Biophys, Chicago, IL 60612 USA
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS | 2000年 / 1458卷 / 01期
关键词
proton; proton channel; proton transport; pH regulation; hydrogen ion; proton permeability;
D O I
10.1016/S0005-2728(00)00062-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The existence of a proton-selective pathway through a protein is a common feature of voltage-gated proton channels and a number of molecules that play pivotal roles in bioenergetics. Although the functions and structures of these molecules are quite diverse, the proton conducting pathways share a number of fundamental properties. Conceptual parallels include the translocation by hydrogen-bended chain mechanisms, problems of supply and demand, equivalence of chemical and electrical proton gradients, proton wells, alternating access sites, pK(a) changes induced by protein conformational change, and heavy metal participation in proton transfer processes. An archetypal mechanism involves input and output proton pathways (hydrogen-bonded chains) joined by a regulatory site that switches the accessibility of the bound proton from one 'channel' to the other, by means of a pK(a) change, molecular movement, or both. Although little is known about the structure of voltage-gated proton channels, they appear to share many of these features. Evidently, nature has devised a limited number of mechanisms to accomplish various design strategies, and these fundamental mechanisms are repeated with minor variation in many superficially disparate molecules. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:104 / 119
页数:16
相关论文
共 123 条
[1]   Hydrogen bonds, water rotation and proton mobility [J].
Agmon, N .
JOURNAL DE CHIMIE PHYSIQUE ET DE PHYSICO-CHIMIE BIOLOGIQUE, 1996, 93 (10) :1714-1736
[2]   PROTON CONDUCTANCE BY THE GRAMICIDIN WATER WIRE - MODEL FOR PROTON CONDUCTANCE IN THE F1F0 ATPASES [J].
AKESON, M ;
DEAMER, DW .
BIOPHYSICAL JOURNAL, 1991, 60 (01) :101-109
[3]   PROTON CHANNEL OF THE CHLOROPLAST ATP SYNTHASE, CF0 - ITS TIME-AVERAGED SINGLE-CHANNEL CONDUCTANCE AS FUNCTION OF PH, TEMPERATURE, ISOTOPIC AND IONIC MEDIUM COMPOSITION [J].
ALTHOFF, G ;
LILL, H ;
JUNGE, W .
JOURNAL OF MEMBRANE BIOLOGY, 1989, 108 (03) :263-271
[4]   A VOLTAGE-GATED HYDROGEN-ION CURRENT IN THE OOCYTE MEMBRANE OF THE AXOLOTL, AMBYSTOMA [J].
BARISH, ME ;
BAUD, C .
JOURNAL OF PHYSIOLOGY-LONDON, 1984, 352 (JUL) :243-263
[5]   A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions [J].
Bernal, JD ;
Fowler, RH .
JOURNAL OF CHEMICAL PHYSICS, 1933, 1 (08) :515-548
[6]   A VOLTAGE-DEPENDENT PROTON CURRENT IN CULTURED HUMAN SKELETAL-MUSCLE MYOTUBES [J].
BERNHEIM, L ;
KRAUSE, RM ;
BAROFFIO, A ;
HAMANN, M ;
KAELIN, A ;
BADER, CR .
JOURNAL OF PHYSIOLOGY-LONDON, 1993, 470 :313-333
[7]   THE MOTA PROTEIN OF ESCHERICHIA-COLI IS A PROTON-CONDUCTING COMPONENT OF THE FLAGELLAR MOTOR [J].
BLAIR, DF ;
BERG, HC .
CELL, 1990, 60 (03) :439-449
[8]   CHARACTERIZATION OF PROTON CURRENTS IN NEURONS OF THE SNAIL, LYMNAEA-STAGNALIS [J].
BYERLY, L ;
SUEN, Y .
JOURNAL OF PHYSIOLOGY-LONDON, 1989, 413 :75-89
[9]   RAPIDLY ACTIVATING HYDROGEN-ION CURRENTS IN PERFUSED NEURONS OF THE SNAIL, LYMNAEA-STAGNALIS [J].
BYERLY, L ;
MEECH, R ;
MOODY, W .
JOURNAL OF PHYSIOLOGY-LONDON, 1984, 351 (JUN) :199-216
[10]  
Cao YW, 1997, J NEUROSCI, V17, P2257