Dots versus Antidots: Computational Exploration of Structure, Magnetism, and Half-Metallicity in Boron-Nitride Nanostructures

被引:177
作者
Du, Aijun [1 ]
Chen, Ying [2 ]
Zhu, Zhonghua [3 ]
Amal, Rose [4 ]
Lu, Gao Qing [5 ]
Smith, Sean C. [1 ]
机构
[1] Univ Queensland, Ctr Computat Mol Sci, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia
[2] Deakin Univ, Inst Technol Res & Innovat, Waurn Ponds, Vic 3217, Australia
[3] Univ Queensland, Sch Chem Engn, Brisbane, Qld 4072, Australia
[4] Univ New S Wales, Sch Chem Sci & Engn, ARC Ctr Excellence Funct Nanomat, Sydney, NSW 2052, Australia
[5] Univ Queensland, Australian Inst Bioengn & Nanotechnol, ARC Ctr Excellence Funct Nanomat, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
TOTAL-ENERGY CALCULATIONS; MASSLESS DIRAC FERMIONS; ELECTRONIC-STRUCTURE; GRAPHENE; GAS;
D O I
10.1021/ja9071942
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Triangle-shaped nanohole, nanodot, and lattice antidot structures in hexagonal boron-nitride (h-BN) monolayer sheets are characterized with density functional theory calculations utilizing the local spin density approximation. We find that such structures may exhibit very large magnetic moments and associated spin splitting. N-terminated nanodots and antidots show strong spin anisotropy around the Fermi level, that is, half-metallicity. While B-terminated nanodots are shown to lack magnetism due to edge reconstruction, B-terminated nanoholes can retain magnetic character due to the enhanced structural stability of the surrounding two-dimensional matrix. In spite of significant lattice contraction due to the presence of multiple holes, antidot super lattices are predicted to be stable, exhibiting amplified magnetism as well as greatly enhanced half-metallicity. Collectively, the results indicate new opportunities for designing h-BN-based nanoscale devices with potential applications in the areas of spintronics, light emission, and photocatalysis.
引用
收藏
页码:17354 / 17359
页数:6
相关论文
共 33 条
[1]   Electronic structure of defects in a boron nitride monolayer [J].
Azevedo, S. ;
Kaschny, J. R. ;
de Castilho, C. M. C. ;
Mota, F. de Brito .
EUROPEAN PHYSICAL JOURNAL B, 2009, 67 (04) :507-512
[2]   A theoretical investigation of defects in a boron nitride monolayer [J].
Azevedo, Sergio ;
Kaschny, J. R. ;
de Castilho, Caio M. C. ;
Mota, F. de Brito .
NANOTECHNOLOGY, 2007, 18 (49)
[3]   Magnetic boron nitride nanoribbons with tunable electronic properties [J].
Barone, Veronica ;
Peralta, Juan E. .
NANO LETTERS, 2008, 8 (08) :2210-2214
[4]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[5]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[6]   Direct observation of defect levels in hexagonal BN by soft X-ray absorption spectroscopy [J].
Bozanic, A. ;
Petravic, M. ;
Fan, L. -J. ;
Yang, Y. -W. ;
Chen, Y. .
CHEMICAL PHYSICS LETTERS, 2009, 472 (4-6) :190-193
[7]   GROUND-STATE OF THE ELECTRON-GAS BY A STOCHASTIC METHOD [J].
CEPERLEY, DM ;
ALDER, BJ .
PHYSICAL REVIEW LETTERS, 1980, 45 (07) :566-569
[8]   First-principle studies of electronic structure and C-doping effect in boron nitride nanoribbon [J].
Du, A. J. ;
Smith, Sean C. ;
Lu, G. Q. .
CHEMICAL PHYSICS LETTERS, 2007, 447 (4-6) :181-186
[9]   First principle studies of zigzag AlN nanoribbon [J].
Du, A. J. ;
Zhu, Z. H. ;
Chen, Y. ;
Lu, G. Q. ;
Smith, Sean C. .
CHEMICAL PHYSICS LETTERS, 2009, 469 (1-3) :183-185
[10]   Graphene - Quantum information on chicken wire [J].
Fal'ko, Vladimir .
NATURE PHYSICS, 2007, 3 (03) :151-152