Role of the cytoplasmic segments of Sec61α in the ribosome-binding and translocation-promoting activities of the Sec61 complex

被引:58
作者
Raden, D [1 ]
Song, WQ [1 ]
Gilmore, R [1 ]
机构
[1] Univ Massachusetts, Sch Med, Dept Biochem & Mol Biol, Worcester, MA 01655 USA
关键词
endoplasmic reticulum; protein targeting; protein translocation; translocation structure; protein topology;
D O I
10.1083/jcb.150.1.53
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The Sec61 complex performs a dual function in protein translocation across the RER, serving as both the high affinity ribosome receptor and the translocation channel. To define regions of the Sec61 complex that are involved in ribosome binding and translocation promotion, ribosome-stripped microsomes were subjected to limited digestions using proteases with different cleavage specificities. Protein immunoblot analysis using antibodies specific for the NH2 and COOH terminus of Sec61 alpha was used to map the location of proteolysis cleavage sites. We observed a striking correlation between the loss of binding activity for nontranslating ribosomes and the digestion of the COOH-terminal tail or cytoplasmic loop 8 of Sec61 alpha. The proteolyzed microsomes were assayed for SRP-independent translocation activity to determine whether high affinity binding of the ribosome to the Sec61 complex is a prerequisite for nascent chain transport. Microsomes that do not bind nontranslating ribosomes at physiolagical ionic strength remain active in SRP-independent translocation, indicating that the ribosome binding and translocation promotion activities of the Sec61 complex do not strictly correlate. Translocation-promoting activity was most severely inhibited by cleavage of cytosolic loop 6, indicating that this segment is a critical determinant for this function of the Sec61 complex.
引用
收藏
页码:53 / 64
页数:12
相关论文
共 44 条
[1]   RIBOSOME-MEMBRANE INTERACTION - NONDESTRUCTIVE DISASSEMBLY OF RAT-LIVER ROUGH MICROSOMES INTO RIBOSOMAL AND MEMBRANOUS COMPONENTS [J].
ADELMAN, MR ;
SABATINI, DD ;
BLOBEL, G .
JOURNAL OF CELL BIOLOGY, 1973, 56 (01) :206-229
[2]   TOPOLOGY ANALYSIS OF THE SECY PROTEIN, AN INTEGRAL MEMBRANE-PROTEIN INVOLVED IN PROTEIN EXPORT IN ESCHERICHIA-COLI [J].
AKIYAMA, Y ;
ITO, K .
EMBO JOURNAL, 1987, 6 (11) :3465-3470
[3]   Alignment of conduits for the nascent polypeptide chain in the Ribosome-Sec61 complex [J].
Beckmann, R ;
Bubeck, D ;
Grassucci, R ;
Penczek, P ;
Verschoor, A ;
Blobel, G ;
Frank, J .
SCIENCE, 1997, 278 (5346) :2123-2126
[4]   RIBOSOMAL-MEMBRANE INTERACTION - INVITRO BINDING OF RIBOSOMES TO MICROSOMAL-MEMBRANES [J].
BORGESE, N ;
MOK, W ;
KREIBICH, G ;
SABATINI, DD .
JOURNAL OF MOLECULAR BIOLOGY, 1974, 88 (03) :559-580
[5]   RIBOSOME BINDING TO THE ENDOPLASMIC-RETICULUM - A 180-KD PROTEIN IDENTIFIED BY CROSS-LINKING TO MEMBRANE-BOUND RIBOSOMES IS NOT REQUIRED FOR RIBOSOME BINDING-ACTIVITY [J].
COLLINS, PG ;
GILMORE, R .
JOURNAL OF CELL BIOLOGY, 1991, 114 (04) :639-649
[6]   ACCESS OF PROTEINASE-K TO PARTIALLY TRANSLOCATED NASCENT POLYPEPTIDES IN INTACT AND DETERGENT-SOLUBILIZED MEMBRANES [J].
CONNOLLY, T ;
COLLINS, P ;
GILMORE, R .
JOURNAL OF CELL BIOLOGY, 1989, 108 (02) :299-307
[7]   THE SIGNAL RECOGNITION PARTICLE RECEPTOR MEDIATES THE GTP-DEPENDENT DISPLACEMENT OF SRP FROM THE SIGNAL SEQUENCE OF THE NASCENT POLYPEPTIDE [J].
CONNOLLY, T ;
GILMORE, R .
CELL, 1989, 57 (04) :599-610
[8]   ASSEMBLY OF INFLUENZA HEMAGGLUTININ TRIMERS AND ITS ROLE IN INTRACELLULAR-TRANSPORT [J].
COPELAND, CS ;
DOMS, RW ;
BOLZAU, EM ;
WEBSTER, RG ;
HELENIUS, A .
JOURNAL OF CELL BIOLOGY, 1986, 103 (04) :1179-1191
[9]   THE SIGNAL SEQUENCE MOVES THROUGH A RIBOSOMAL TUNNEL INTO A NONCYTOPLASMIC AQUEOUS ENVIRONMENT AT THE ER MEMBRANE EARLY IN TRANSLOCATION [J].
CROWLEY, KS ;
REINHART, GD ;
JOHNSON, AE .
CELL, 1993, 73 (06) :1101-1115
[10]   SECRETORY PROTEINS MOVE THROUGH THE ENDOPLASMIC-RETICULUM MEMBRANE VIA AN AQUEOUS, GATED PORE [J].
CROWLEY, KS ;
LIAO, SR ;
WORRELL, VE ;
REINHART, GD ;
JOHNSON, AE .
CELL, 1994, 78 (03) :461-471