Translating climate forecasts into agricultural terms: advances and challenges

被引:194
作者
Hansen, James W.
Challinor, Andrew
Ines, Amor
Wheeler, Tim
Moron, Vincent
机构
[1] Int Res Inst Climate & Soc, Palisades, NY 10964 USA
[2] Univ Reading, Dept Meteorol, Reading RG6 6BB, Berks, England
[3] Texas A&M Univ, Dept Biol & Agr Engn, College Stn, TX 77843 USA
[4] Univ Reading, Dept Agr, Reading RG6 6AR, Berks, England
关键词
yield forecasting; general circulation model; GCM; crop simulation model; stochastic weather generator; calibration; probabilistic forecasting;
D O I
10.3354/cr033027
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Seasonal climate prediction offers the potential to anticipate variations in crop production early enough to adjust critical decisions. Until recently, interest in exploiting seasonal forecasts from dynamic climate models (e.g. general circulation models, GCMs) for applications that involve crop simulation models has been hampered by the difference in spatial and temporal scale of GCMs and crop models, and by the dynamic, nonlinear relationship between meteorological variables and crop response. Although GCMs simulate the atmosphere on a sub-daily time step, their coarse spatial resolution and resulting distortion of day-to-day variability limits the use of their daily output. Crop models have used daily GCM output with some success by either calibrating simulated yields or correcting the daily rainfall output of the GCM to approximate the statistical properties of historic observations. Stochastic weather generators are used to disaggregate seasonal forecasts either by adjusting input parameters in a manner that captures the predictable components of climate, or by constraining synthetic weather sequences to match predicted values. Predicting crop yields, simulated with historic weather data, as a statistical function of seasonal climatic predictors, eliminates the need for daily weather data conditioned on the forecast, but must often address poor statistical properties of the crop-climate relationship. Most of the work on using crop simulation with seasonal climate forecasts has employed historic analogs based on categorical ENSO indices. Other methods based on classification of predictors or weather types can provide daily weather inputs to crop models conditioned on forecasts. Advances in climate-based crop forecasting in the coming decade are likely to include more robust evaluation of the methods reviewed here, dynamically embedding crop models within climate models to account for crop influence on regional climate, enhanced use of remote sensing, and research in the emerging area of 'weather within climate'.
引用
收藏
页码:27 / 41
页数:15
相关论文
共 103 条
[1]  
[Anonymous], NATURE
[2]   Application of the CERES-Wheat model for within-season prediction of winter wheat yield in the United Kingdom [J].
Bannayan, M ;
Crout, NMJ ;
Hoogenboom, G .
AGRONOMY JOURNAL, 2003, 95 (01) :114-125
[3]   Multimodel ensembling in seasonal climate forecasting at IRI [J].
Barnston, AG ;
Mason, SJ ;
Goddard, L ;
DeWitt, DG ;
Zebiak, SE .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2003, 84 (12) :1783-+
[4]   From GCM grid cell to agricultural plot: scale issues affecting modelling of climate impact [J].
Baron, C ;
Sultan, B ;
Balme, M ;
Sarr, B ;
Traore, S ;
Lebel, T ;
Janicot, S ;
Dingkuhn, M .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2005, 360 (1463) :2095-2108
[5]   The value of imperfect ENSO information: Discussion [J].
Barrett, CB .
AMERICAN JOURNAL OF AGRICULTURAL ECONOMICS, 1998, 80 (05) :1109-1112
[6]   Integrated approaches to climate-crop modelling: needs and challenges [J].
Betts, RA .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2005, 360 (1463) :2049-2065
[7]   Operational forecasting of South African sugarcane production: Part 1 - System description [J].
Bezuidenhout, C. N. ;
Singels, A. .
AGRICULTURAL SYSTEMS, 2007, 92 (1-3) :23-38
[8]  
Blench R., 2003, COPING CLIMATE VARIA, P59
[9]   LINKING PHYSICAL REMOTE-SENSING MODELS WITH CROP GROWTH SIMULATION-MODELS, APPLIED FOR SUGAR-BEET [J].
BOUMAN, BAM .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1992, 13 (14) :2565-2581
[10]   AN ANALYSIS OF TRANSFORMATIONS [J].
BOX, GEP ;
COX, DR .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1964, 26 (02) :211-252