Inactivation of dehydratase [4Fe-4S] clusters and disruption of iron homeostasis upon cell exposure to peroxynitrite

被引:95
作者
Keyer, K [1 ]
Imlay, JA [1 ]
机构
[1] UNIV ILLINOIS, DEPT MICROBIOL, URBANA, IL 61801 USA
关键词
D O I
10.1074/jbc.272.44.27652
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Phagocytes produce both nitric oxide and superoxide as components of the oxidative defense against pathogens. Neither molecule is likely at physiological concentrations to kill cells. However, two of their reaction products, hydrogen peroxide and peroxynitrite, are strong oxidants, cell-permeant, and toxic. Hydrogen peroxide generates oxidative DNA damage, while the primary mechanism of toxicity of peroxynitrite has not yet been determined. Recent in vitro studies indicated that peroxynitrite is capable of oxidizing the [4Fe-4S] clusters of a family of dehydratases (Hausladen, A., and Fridovich, I. (1994) J. Biol. Chem. 269, 29405-29408; Castro, L., Rodriguez, M., and Radi, R. (1994) J. Biol. Chem. 269, 29409-29415). We demonstrate here that peroxynitrite at 1% of its lethal dose almost fully inactivated the labile dehydratases in Escherichia coli. The rate at which peroxynitrite inactivated the clusters substantially exceeded the rate at which it oxidized thiols or spontaneously decomposed. These results suggest that these dehydratases may be primary targets of peroxynitrite in vivo. Another consequence of the cluster damage was the release of 100 mu m iron into the cytosol. During phagocytosis, this intracellular free iron could increase lethal DNA damage by hydrogen peroxide or protein modification by additional peroxynitrite. In response to peroxynitrite challenges, E. coli rapidly sequestered the intracellular free iron using an undefined scavenging system. The iron-sulfur clusters were more gradually repaired by a process that drew iron from its iron-storage proteins. These are likely to be critical events in the struggle between phagocyte and pathogen.
引用
收藏
页码:27652 / 27659
页数:8
相关论文
共 71 条
[1]   FERRIC UPTAKE REGULATION PROTEIN ACTS AS A REPRESSOR, EMPLOYING IRON(II) AS A COFACTOR TO BIND THE OPERATOR OF AN IRON TRANSPORT OPERON IN ESCHERICHIA-COLI [J].
BAGG, A ;
NEILANDS, JB .
BIOCHEMISTRY, 1987, 26 (17) :5471-5477
[2]   APPARENT HYDROXYL RADICAL PRODUCTION BY PEROXYNITRITE - IMPLICATIONS FOR ENDOTHELIAL INJURY FROM NITRIC-OXIDE AND SUPEROXIDE [J].
BECKMAN, JS ;
BECKMAN, TW ;
CHEN, J ;
MARSHALL, PA ;
FREEMAN, BA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (04) :1620-1624
[3]   KINETICS OF SUPEROXIDE DISMUTASE-CATALYZED AND IRON-CATALYZED NITRATION OF PHENOLICS BY PEROXYNITRITE [J].
BECKMAN, JS ;
ISCHIROPOULOS, H ;
ZHU, L ;
VANDERWOERD, M ;
SMITH, C ;
CHEN, J ;
HARRISON, J ;
MARTIN, JC ;
TSAI, M .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1992, 298 (02) :438-445
[4]  
BECKMAN JS, 1994, METHOD ENZYMOL, V233, P229
[5]   REACTION OF BACILLUS-SUBTILIS GLUTAMINE PHOSPHORIBOSYLPYROPHOSPHATE AMIDOTRANSFERASE WITH OXYGEN - CHEMISTRY AND REGULATION BY LIGANDS [J].
BERNLOHR, DA ;
SWITZER, RL .
BIOCHEMISTRY, 1981, 20 (20) :5675-5681
[6]   THE COMPARATIVE TOXICITY OF NITRIC-OXIDE AND PEROXYNITRITE TO ESCHERICHIA-COLI [J].
BRUNELLI, L ;
CROW, JP ;
BECKMAN, JS .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1995, 316 (01) :327-334
[7]   RECOMBINATION-DEFICIENT MUTANTS OF SALMONELLA-TYPHIMURIUM ARE AVIRULENT AND SENSITIVE TO THE OXIDATIVE BURST OF MACROPHAGES [J].
BUCHMEIER, NA ;
LIPPS, CJ ;
SO, MYH ;
HEFFRON, F .
MOLECULAR MICROBIOLOGY, 1993, 7 (06) :933-936
[8]   KINETICS OF NITRIC-OXIDE AND HYDROGEN-PEROXIDE PRODUCTION AND FORMATION OF PEROXYNITRITE DURING THE RESPIRATORY BURST OF HUMAN NEUTROPHILS [J].
CARRERAS, MC ;
PARGAMENT, GA ;
CATZ, SD ;
PODEROSO, JJ ;
BOVERIS, A .
FEBS LETTERS, 1994, 341 (01) :65-68
[9]  
CASTRO L, 1994, J BIOL CHEM, V269, P29409
[10]  
COLMAN RF, 1968, J BIOL CHEM, V243, P2454