A global characterization of gap solitary-wave solutions to a coupled KdV system

被引:9
作者
Champneys, A [1 ]
Groves, MD
Woods, PD
机构
[1] Univ Bristol, Dept Engn Math, Bristol BS8 1TR, Avon, England
[2] Univ Loughborough, Dept Math Sci, Loughborough LE11 3TU, Leics, England
基金
英国工程与自然科学研究理事会;
关键词
coupled Korteweg-de Vries equations; solitary waves; reversible 1 : 1 resonance; normal-form analysis; kinks;
D O I
10.1016/S0375-9601(00)00355-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two coupled KdV equations, depending upon three dimensionless parameters, are investigated for gap solitary-wave solutions. Normal-form analysis of two degenerate Hamiltonian-Hopf bifurcations captures small-amplitude envelope solitary waves. Agreement occurs with numerical continuation to large amplitude, linking solitary waves, kinks, and a 'snaking' transition to infinite periodic cores. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:178 / 190
页数:13
相关论文
共 24 条
[1]  
[Anonymous], 1997, AUTO 97: Continuation and Bifurcation Software for Ordinary Differential Equations, user's Manual
[2]   IMPULSE, FLOW FORCE AND VARIATIONAL-PRINCIPLES [J].
BENJAMIN, TB .
IMA JOURNAL OF APPLIED MATHEMATICS, 1984, 32 (1-3) :3-68
[3]   A MODEL SYSTEM FOR STRONG INTERACTION BETWEEN INTERNAL SOLITARY WAVES [J].
BONA, JL ;
PONCE, G ;
SAUT, JC ;
TOM, MM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 143 (02) :287-313
[4]   A multiplicity result for solitary gravity-capillary waves in deep water via critical-point theory [J].
Buffoni, B ;
Groves, MD .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 146 (03) :183-220
[5]  
Buffoni B., 1996, Journal of Dynamics and Differential Equations, V8, P221
[6]   On the stability of solitary wave solutions of the fifth-order KdV equation [J].
Buryak, AV ;
Champneys, AR .
PHYSICS LETTERS A, 1997, 233 (1-2) :58-62
[7]   A global investigation of solitary-wave solutions to a two-parameter model for water waves [J].
Champneys, AR ;
Groves, MD .
JOURNAL OF FLUID MECHANICS, 1997, 342 :199-229
[8]  
Dias F, 1996, EUR J MECH B-FLUID, V15, P367
[9]   A SIMPLE GLOBAL CHARACTERIZATION FOR NORMAL FORMS OF SINGULAR VECTOR-FIELDS [J].
ELPHICK, C ;
TIRAPEGUI, E ;
BRACHET, ME ;
COULLET, P ;
IOOSS, G .
PHYSICA D, 1987, 29 (1-2) :95-127
[10]  
GEAR JA, 1984, STUD APPL MATH, V70, P235