Predicting dental implant survival by use of the marginal approach of the semi-parametric survival methods for clustered observations

被引:47
作者
Chuang, SK
Tian, L
Wei, LJ
Dodson, TB
机构
[1] Harvard Univ, Sch Dent Med, Cambridge, MA 02138 USA
[2] Harvard Univ, Sch Dent Med, Dept Oral Hlth Policy & Epidemiol, Boston, MA 02115 USA
[3] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[4] Massachusetts Gen Hosp, Dept Oral & Maxillofacial Surg, Boston, MA 02114 USA
关键词
survival predictions; dental implants; clustered data; correlated survival analysis; proportional hazards model; marginal approach; Aalen-Breslow estimator;
D O I
10.1177/154405910208101211
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
The analyses of clustered survival observations within the same subject are challenging. This study's purpose was to compare and contrast predicted dental implant survival estimates assuming the independence or dependence of clustered observations. Using a retrospective cohort composed of 677 patients (2349 implants), we applied an innovative analytic marginal approach to produce point and variance estimates of survival predictions given the covariates smoking status, implant staging, and timing of placement adjusted for clustered observations (dependence method). We developed a second model assuming independence of the clustered observations (naive method). The 95% confidence intervals for survival prediction point estimates given the naive method were 5.9% to 14.3% more narrow than the dependence method estimates, resulting in an increased risk for type I error and erroneous rejection of the null hypothesis. To obtain statistically valid confidence intervals for survival prediction of the Aalen-Breslow estimates, we recommend adjusting for dependence among clustered survival observations.
引用
收藏
页码:851 / 855
页数:5
相关论文
共 27 条
[1]  
Brocard D, 2000, INT J ORAL MAX IMPL, V15, P691
[2]   Long-term evaluation of non-submerged ITI implants .1. 8-year life table analysis of a prospective multi-center study with 2359 implants [J].
Buser, D ;
MericskeStern, R ;
Bernard, JP ;
Behneke, A ;
Behneke, N ;
Hirt, HP ;
Belser, UC ;
Lang, NP .
CLINICAL ORAL IMPLANTS RESEARCH, 1997, 8 (03) :161-172
[3]   Predicting survival probabilities with semiparametric transformation models [J].
Cheng, SC ;
Wei, LJ ;
Ying, Z .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (437) :227-235
[4]   Analysis of transformation models with censored data [J].
Cheng, SC ;
Wei, LJ ;
Ying, Z .
BIOMETRIKA, 1995, 82 (04) :835-845
[5]   Kaplan-Meier analysis of dental implant survival: A strategy for estimating survival with clustered observations [J].
Chuang, SK ;
Tian, L ;
Wei, LJ ;
Dodson, TB .
JOURNAL OF DENTAL RESEARCH, 2001, 80 (11) :2016-2020
[6]   Risk factors for dental implant failure: A strategy for the analysis of clustered failure-time observations [J].
Chuang, SK ;
Wei, LJ ;
Douglass, CW ;
Dodson, TB .
JOURNAL OF DENTAL RESEARCH, 2002, 81 (08) :572-577
[7]  
COX DR, 1972, J R STAT SOC B, V34, P187
[8]  
*DENT IMPL CLIN RE, 1997, J ORAL MAXILLOFAC S5, V55, P7
[9]  
Gomez-Roman G, 2001, INT J ORAL MAX IMPL, V16, P503
[10]  
Haas R, 1996, Int J Oral Maxillofac Implants, V11, P581