Plant cell elongation depends on the physical properties of the primary cell wall. Because xyloglucan endotransglycosylases (XETs) are enzymes that mediate cleavage and rejoining of the beta(1-4)-XG backbone of primary cell wall, they are potentially involved in cell elongation. In this paper, the growth of the barley coleoptile was related to the expression patterns of two genes from this family (hvEXT, hvXEB) in experiments where coleoptile elongation Varied according to light/dark treatments in order to assess the potential role of these genes in cell elongation. In dark-grown and light-grown coleoptiles, growth rate variations were associated with altered levels of expression of hvEXT and hvXEB: they were higher in dark-grown than in light-grown seedlings, and decreased after 5 d in darkness, and after 4 d in continuous light. In 4-d-old seedlings, coleoptile elongation decreased significantly 4 h after the onset of a continuous white-light irradiation, and hvXEB and hvEXT mRNA levels decreased, respectively, 2 h and 4 h after the onset of white-light irradiation. Moreover, the distribution of hvXEB and hvEXT along the coleoptiles of 4-d-old dark-grown seedlings were different. Altogether, these results suggest a complex pattern of temporal and positional expression for the different genes of the XET-related family.