We investigated the involvement of calcitonin gene-related peptide (CGRP) in the vasodilatory mechanism of action of nitric oxide (NO) donors. The functional role of CGRP in NO donor-induced vasodilation of isolated rat aortic rings was determined by incubating these drugs with and without CGRP(8-37), a selective CGRP receptor antagonist. CGRP(8-37) (0.63 mu M) induced rightward shifts in the vasodilatory concentration-response curves for nitroglycerin (NTG), Piloty's acid (PA), and SIN-1 (linsidomine). The Ec(50) values for NTG, PA, and SIN-1 were increased by 8.3-, 5.2-, and 2.3-fold, respectively (P < 0.05). The release of CGRP from rat aorta in response to NTG and PA was measured specifically by radioimmunoassay. Thirty-minute incubations of NTG or PA with rat aorta induced 189.5 and 214.6% increases, respectively, in CGRP release when compared with the control (P ( 0.05). The concentration-response curves of sodium nitroprusside (SNP), S-nitroso-acetylpenicillamine (SNAP), tetranitromethane (TNM), diethylamine NO complex (DEA-NO), and diethylenetriamine/nitric oxide adduct (DETA NONOate) were not inhibited significantly by CGRP(8-37) co-incubation (P > 0.05). NO donors also were incubated with aortic strips, and NTG and PA alone induced significant formation of hydroxylamine, a NO- metabolite (232.4 and 364.9%, respectively, P < 0.05). These results indicate that only NTG and PA, and to a lesser extent SIN-1, stimulate the release of CGRP from the rat aorta, which subsequently contributes to the vasodilatory activity of these agents. The hydroxylamine formation suggests a possible link between NO- generation and CGRP release from the vascular wall. (C) 2000 Elsevier Science Inc.