High-frequency activity in human visual cortex is modulated by visual motion strength

被引:108
作者
Siegel, Markus
Donner, Tobias H.
Oostenveld, Robert
Fries, Pascal
Engel, Andreas K.
机构
[1] Univ Hamburg, Med Ctr, Ctr Med Expt, Dept Neurophysiol & Pathophysiol, D-20246 Hamburg, Germany
[2] Radboud Univ Nijmegen, FC Donders Ctr Cognit Neuroimaging, NL-6525 EN Nijmegen, Netherlands
[3] Univ Aalborg, Ctr Sensory Motor Interact, DK-9220 Aalborg, Denmark
[4] Radboud Univ Nijmegen, Dept Biophys, NL-6525 EZ Nijmegen, Netherlands
关键词
area MT; gamma band; MEG; motion discrimination; oscillation; synchronization;
D O I
10.1093/cercor/bhk025
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
A central goal in systems neuroscience is to understand how the brain encodes the intensity of sensory features. We used whole-head magnetoencephalography to investigate whether frequency-specific neuronal activity in the human visual cortex is systematically modulated by the intensity of an elementary sensory feature such as visual motion. Visual stimulation induced a tonic increase of neuronal activity at frequencies above 50 Hz. In order to define a functional frequency band of neuronal activity, we parametrically investigated which frequency band displays the strongest monotonic increase of responses with strength of visual motion. Consistently in all investigated subjects, this analysis resulted in a functional frequency band in the high gamma range from about 60 to 100 Hz in which activity reliably increased with visual motion strength. Using distributed source reconstruction, we found that this increase of high-frequency neuronal activity originates from several extrastriate cortical regions specialized in motion processing. We conclude that high-frequency activity in the human visual motion pathway may be relevant for encoding the intensity of visual motion signals.
引用
收藏
页码:732 / 741
页数:10
相关论文
共 69 条
[1]   Adaptive coincidence detection and dynamic gain control in visual cortical neurons in vivo [J].
Azouz, R ;
Gray, CM .
NEURON, 2003, 37 (03) :513-523
[2]  
BAIR W, 1994, J NEUROSCI, V14, P2870
[3]   Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey [J].
Bair, W ;
Koch, C .
NEURAL COMPUTATION, 1996, 8 (06) :1185-1202
[4]   Correlated firing in macaque visual area MT: Time scales and relationship to behavior [J].
Bair, W ;
Zohary, E ;
Newsome, WT .
JOURNAL OF NEUROSCIENCE, 2001, 21 (05) :1676-1697
[5]   Parallel and serial neural mechanisms for visual search in macaque area V4 [J].
Bichot, NP ;
Rossi, AF ;
Desimone, R .
SCIENCE, 2005, 308 (5721) :529-534
[6]   Brain areas sensitive to coherent visual motion [J].
Braddick, OJ ;
O'Brien, JMD ;
Wattam-Bell, J ;
Atkinson, J ;
Hartley, T ;
Turner, R .
PERCEPTION, 2001, 30 (01) :61-72
[7]   A relationship between behavioral choice and the visual responses of neurons in macaque MT [J].
Britten, KH ;
Newsome, WT ;
Shadlen, MN ;
Celebrini, S ;
Movshon, JA .
VISUAL NEUROSCIENCE, 1996, 13 (01) :87-100
[8]   RESPONSES OF NEURONS IN MACAQUE MT TO STOCHASTIC MOTION SIGNALS [J].
BRITTEN, KH ;
SHADLEN, MN ;
NEWSOME, WT ;
MOVSHON, JA .
VISUAL NEUROSCIENCE, 1993, 10 (06) :1157-1169
[9]   Characterizing stimulus-response functions using nonlinear regressors in parametric fMRI experiments [J].
Buchel, C ;
Holmes, AP ;
Rees, G ;
Friston, KJ .
NEUROIMAGE, 1998, 8 (02) :140-148
[10]   Induced electrocorticographic gamma activity during auditory perception [J].
Crone, NE ;
Boatman, D ;
Gordon, B ;
Hao, L .
CLINICAL NEUROPHYSIOLOGY, 2001, 112 (04) :565-582