Model selection for convolutive ICA with an application to spatiotemporal analysis of EEG

被引:38
作者
Dyrholm, Mads [1 ]
Makeig, Scott
Hansen, Lars Kai
机构
[1] Tech Univ Denmark, Intelligent Signal Proc Grp, DK-2800 Lyngby, Denmark
[2] Univ Calif San Diego, Swartz Ctr Computat Neurosci, Inst Neural Computat, La Jolla, CA 92093 USA
关键词
D O I
10.1162/neco.2007.19.4.934
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new algorithm for maximum likelihood convolutive independent component analysis (ICA) in which components are unmixed using stable autoregressive filters determined implicitly by estimating a convolutive model of the mixing process. By introducing a convolutive mixing model for the components, we show how the order of the filters in the model can be correctly detected using Bayesian model selection. We demonstrate a framework for deconvolving a subspace of independent components in electroencephalography (EEG). Initial results suggest that in some cases, convolutive mixing may be a more realistic model for EEG signals than the instantaneous ICA model.
引用
收藏
页码:934 / 955
页数:22
相关论文
共 44 条
[1]  
Anemüller J, 2004, LECT NOTES COMPUT SC, V3195, P1103
[2]   Complex independent component analysis of frequency-domain electroencephalographic data [J].
Anemüller, J ;
Sejnowski, TJ ;
Makeig, S .
NEURAL NETWORKS, 2003, 16 (09) :1311-1323
[3]  
ANEMULLER J, 2003, IEEE T SPEECH AUDIO, V39, P79
[4]  
Attias H, 1998, NEURAL COMPUT, V10, P1373, DOI 10.1162/neco.1998.10.6.1373
[5]  
BAUMANN W, 2001, 3 INT C IND COMP AN, P65
[6]   AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION [J].
BELL, AJ ;
SEJNOWSKI, TJ .
NEURAL COMPUTATION, 1995, 7 (06) :1129-1159
[7]   A blind source separation technique using second-order statistics [J].
Belouchrani, A ;
AbedMeraim, K ;
Cardoso, JF ;
Moulines, E .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (02) :434-444
[8]  
Cardoso JF, 2004, LECT NOTES COMPUT SC, V3195, P41
[9]   Blind signal deconvolution by spatio-temporal decorrelation and demixing [J].
Choi, S ;
Cichocki, A .
NEURAL NETWORKS FOR SIGNAL PROCESSING VII, 1997, :426-435
[10]  
Choi S., 1999, P INT WORKSH IND COM, P371