Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD

被引:236
作者
Kong, YF [1 ]
Flick, MJ [1 ]
Kudla, AJ [1 ]
Konieczny, SF [1 ]
机构
[1] PURDUE UNIV,DEPT BIOL SCI,W LAFAYETTE,IN 47907
关键词
D O I
10.1128/MCB.17.8.4750
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The muscle LIM protein (MLP) is a muscle-specific LIM-only factor that exhibits a dual subcellular localization, being present in both the nucleus and in the cytoplasm, Overexpression of MLP in C2C12 myoblasts enhances skeletal myogenesis, whereas inhibition of MLP activity blocks terminal differentiation. Thus, MLP functions as a positive developmental regulator, although the mechanism through which MLP promotes terminal differentiation events remains unknown. While examining the distinct roles associated with the nuclear and cytoplasmic forms of MLP, we found that nuclear MLP functions through a physical interaction with the muscle basic helix-loop-helix (bHLH) transcription factors MyoD, MRF4, and myogenin, This interaction is highly specific since MLP does not associate with nonmuscle bHLH proteins E12 or E47 or with the myocyte enhancer factor-2 (MEF2) protein, which acts cooperatively with the myogenic bHLH proteins to promote myogenesis, The first LIM motif in MLP and the highly conserved bHLH region of MyoD are responsible for mediating the association between these muscle-specific factors. MLP also interacts with MyoD-E47 heterodimers, leading to an increase in the DNA-binding activity associated with this active bHLH complex. Although MLP lacks a functional transcription activation domain, we propose that it serves as a cofactor for the myogenic bHLH proteins by increasing their interaction with specific DNA regulatory elements, Thus, the functional complex of MLP-MyoD-E protein reveals a novel mechanism for both initiating and maintaining the myogenic program and suggests a global strategy for how LIM-only proteins may control a variety of developmental pathways.
引用
收藏
页码:4750 / 4760
页数:11
相关论文
共 67 条
[1]   Specificity of single LIM motifs in targeting and LIM/LIM interactions in situ [J].
Arber, S ;
Caroni, P .
GENES & DEVELOPMENT, 1996, 10 (03) :289-300
[2]   MUSCLE LIM PROTEIN, A NOVEL ESSENTIAL REGULATOR OF MYOGENESIS, PROMOTES MYOGENIC DIFFERENTIATION [J].
ARBER, S ;
HALDER, G ;
CARONI, P .
CELL, 1994, 79 (02) :221-231
[3]   MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure [J].
Arber, S ;
Hunter, JJ ;
Ross, J ;
Hongo, M ;
Sansig, G ;
Borg, J ;
Perriard, JC ;
Chien, KR ;
Caroni, P .
CELL, 1997, 88 (03) :393-403
[4]   P-LIM, A LIM HOMEODOMAIN FACTOR, IS EXPRESSED DURING PITUITARY ORGAN AND CELL COMMITMENT AND SYNERGIZES WITH PIT-1 [J].
BACH, I ;
RHODES, SJ ;
PEARSE, RV ;
HEINZEL, T ;
GLOSS, B ;
SCULLY, KM ;
SAWCHENKO, PE ;
ROSENFELD, MG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (07) :2720-2724
[5]   IMMUNOCHEMICAL ANALYSIS OF MYOSIN HEAVY-CHAIN DURING AVIAN MYOGENESIS INVIVO AND INVITRO [J].
BADER, D ;
MASAKI, T ;
FISCHMAN, DA .
JOURNAL OF CELL BIOLOGY, 1982, 95 (03) :763-770
[6]   Cooperative transcriptional activation by the neurogenic basic helix-loop-helix protein MASH1 and members of the myocyte enhancer factor-2 (MEF2) family [J].
Black, BL ;
Ligon, KL ;
Zhang, Y ;
Olson, EN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (43) :26659-26663
[7]  
BOEHM T, 1990, ONCOGENE, V5, P1103
[8]  
BREITBART RE, 1993, DEVELOPMENT, V118, P1095
[9]   MUTAGENESIS OF THE MYOGENIN BASIC REGION IDENTIFIES AN ANCIENT PROTEIN MOTIF CRITICAL FOR ACTIVATION OF MYOGENESIS [J].
BRENNAN, TJ ;
CHAKRABORTY, T ;
OLSON, EN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (13) :5675-5679
[10]   WHICH MYOGENIC FACTORS MAKE MUSCLE [J].
BUCKINGHAM, M .
CURRENT BIOLOGY, 1994, 4 (01) :61-63