A Duchenne Muscular Dystrophy Gene Hot Spot Mutation in Dystrophin-Deficient Cavalier King Charles Spaniels Is Amenable to Exon 51 Skipping

被引:97
作者
Walmsley, Gemma L. [1 ]
Arechavala-Gomeza, Virginia [2 ]
Fernandez-Fuente, Marta [1 ,2 ]
Burke, Margaret M. [3 ]
Nagel, Nicole [4 ]
Holder, Angela
Stanley, Rachael [1 ]
Chandler, Kate [1 ]
Marks, Stanley L. [5 ]
Muntoni, Francesco [2 ]
Shelton, G. Diane [6 ]
Piercy, Richard J. [1 ,2 ]
机构
[1] Univ London Royal Vet Coll, Dept Vet Clin Sci, London, England
[2] UCL, Inst Child Hlth, Dubowitz Neuromuscular Ctr, London, England
[3] Harefield Hosp, Pathol Lab, Royal Brompton & Harefield NHS Fdn Trust, Harefield UB9 6JH, Middx, England
[4] Alphapet Vet Clin, Bognor Regis, West Sussex, England
[5] Univ Calif Davis, Sch Vet Med, Dept Med & Epidemiol, Davis, CA 95616 USA
[6] Univ Calif San Diego, Sch Med, Dept Pathol, La Jolla, CA 92093 USA
来源
PLOS ONE | 2010年 / 5卷 / 01期
基金
英国医学研究理事会;
关键词
DMD GENE; SKELETAL-MUSCLE; CANINE MODEL; DELETION; EXPRESSION; MICE; DOG; CARDIOMYOPATHY; ORGANIZATION; THERAPY;
D O I
10.1371/journal.pone.0008647
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Duchenne muscular dystrophy (DMD), which afflicts 1 in 3500 boys, is one of the most common genetic disorders of children. This fatal degenerative condition is caused by an absence or deficiency of dystrophin in striated muscle. Most affected patients have inherited or spontaneous deletions in the dystrophin gene that disrupt the reading frame resulting in unstable truncated products. For these patients, restoration of the reading frame via antisense oligonucleotide-mediated exon skipping is a promising therapeutic approach. The major DMD deletion "hot spot" is found between exons 45 and 53, and skipping exon 51 in particular is predicted to ameliorate the dystrophic phenotype in the greatest number of patients. Currently the mdx mouse is the most widely used animal model of DMD, although its mild phenotype limits its suitability in clinical trials. The Golden Retriever muscular dystrophy (GRMD) model has a severe phenotype, but due to its large size, is expensive to use. Both these models have mutations in regions of the dystrophin gene distant from the commonly mutated DMD "hot spot". Methodology/Principal Findings: Here we describe the severe phenotype, histopathological findings, and molecular analysis of Cavalier King Charles Spaniels with dystrophin-deficient muscular dystrophy (CKCS-MD). The dogs harbour a missense mutation in the 59 donor splice site of exon 50 that results in deletion of exon 50 in mRNA transcripts and a predicted premature truncation of the translated protein. Antisense oligonucleotide-mediated skipping of exon 51 in cultured myoblasts from an affected dog restored the reading frame and protein expression. Conclusions/Significance: Given the small size of the breed, the amiable temperament and the nature of the mutation, we propose that CKCS-MD is a valuable new model for clinical trials of antisense oligonucleotide-induced exon skipping and other therapeutic approaches for DMD.
引用
收藏
页数:9
相关论文
共 50 条
[1]   Antisense-induced multiexon skipping for Duchenne muscular dystrophy makes more sense [J].
Aartsma-Rus, A ;
Janson, AAM ;
Kaman, WE ;
Bremmer-Bout, M ;
van Ommen, GJB ;
den Dunnen, JT ;
van Deutekom, JCT .
AMERICAN JOURNAL OF HUMAN GENETICS, 2004, 74 (01) :83-92
[2]   Antisense-mediated exon skipping: A versatile tool with therapeutic and research applications [J].
Aartsma-Rus, Annemieke ;
Van Ommen, Gert-Jan B. .
RNA, 2007, 13 (10) :1609-1624
[3]   Entries in the Leiden Duchenne muscular dystrophy mutation database: An overview of mutation types and paradoxical cases that confirm the reading-frame rule [J].
Aartsma-Rus, Annemieke ;
Van Deutekom, Judith C. T. ;
Fokkema, Ivo F. ;
Van Ommen, Gert-Jan B. ;
Den Dunnen, Johan T. .
MUSCLE & NERVE, 2006, 34 (02) :135-144
[4]   THE STRUCTURAL AND FUNCTIONAL DIVERSITY OF DYSTROPHIN [J].
AHN, AH ;
KUNKEL, LM .
NATURE GENETICS, 1993, 3 (04) :283-291
[5]   Ringo, a Golden Retriever Muscular Dystrophy (GRMD) dog with absent dystrophin but normal strength [J].
Ambrosio, C. E. ;
Valadares, M. C. ;
Zucconi, E. ;
Cabral, R. ;
Pearson, P. L. ;
Gaiad, T. P. ;
Canovas, M. ;
Vainzof, M. ;
Miglino, M. A. ;
Zatz, M. .
NEUROMUSCULAR DISORDERS, 2008, 18 (11) :892-893
[6]   Comparative analysis of antisense oligonucleotide sequences for targeted skipping of Exon 51 during dystrophin Pre-mRNA splicing in human muscle [J].
Arechavala-Gomeza, V. ;
Graham, I. R. ;
Popplewell, L. J. ;
Adams, A. M. ;
Aartsma-Rus, A. ;
Kinali, M. ;
Morgan, J. E. ;
Van Deutekom, J. C. ;
Wilton, S. D. ;
Dickson, G. ;
Muntoni, F. .
HUMAN GENE THERAPY, 2007, 18 (09) :798-810
[7]   THE VALUE OF MAMMALIAN MODELS FOR DUCHENNE MUSCULAR DYSTROPHY IN DEVELOPING THERAPEUTIC STRATEGIES [J].
Banks, Glen B. ;
Chamberlain, Jeffrey S. .
MOUSE MODELS OF DEVELOPMENTAL GENETIC DISEASE, 2008, 84 :431-453
[8]  
Bushby K, 2005, CURR PAEDIAT, V15, P292, DOI [DOI 10.1016/J.CUPE.2005.04.001, 10.1016/j.cupe.2005.04.001.4D, 10.1016/j.cupe.2005.04.001]
[9]   Dystrophic phenotype of canine X-linked muscular dystrophy is mitigated by adenovirus-mediated utrophin gene transfer [J].
Cerletti, M ;
Negri, T ;
Cozzi, F ;
Colpo, R ;
Andreetta, F ;
Croci, D ;
Davies, KE ;
Cornelio, F ;
Pozza, O ;
Karpati, G ;
Gilbert, R ;
Mora, M .
GENE THERAPY, 2003, 10 (09) :750-757
[10]   RECOVERY OF INDUCED MUTATIONS FOR X-CHROMOSOME-LINKED MUSCULAR-DYSTROPHY IN MICE [J].
CHAPMAN, VM ;
MILLER, DR ;
ARMSTRONG, D ;
CASKEY, CT .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (04) :1292-1296