We tested the efficacy of matrix based fertilizer formulations (MBF) that reduce NH4, total phosphorus (TP), total reactive phosphorus (TRP) and dissolved reactive phosphorus (DRP) in leachate. The MBF formulations cover a range of inorganic N and P in compounds that are relatively loosely bound (MBF1) to more moderately bound (MBF2) and more tightly bound compounds (MBF3) mixed with Al(SO4)(3) H2O and/or Fe-2(SO4)(3) and with the high ionic exchange compounds starch, chitosan and lignin. Glomus interadicies, a species of arbuscular mycorrhizal fungal spores that will form mycorrhizae in high nutrient environments, was added to the MBF formulations to increase plant nutrient uptake. When N and P are released from the inorganic chemicals containing N and P the matrix based fertilizers likely bind these nutrients to the Al(SO4)(3) H2O and/or Fe-2(SO4)(3) starch-chitosan-lignin matrix. We tested the efficacy of the MBFs to reduce N and P leaching compared to Osmocote((R)) 14-14-14, a slow release fertilizer (SRF) in sand filled columns in a greenhouse study. SRF with and without Al and Fe leached 78-84% more NH4, 58-78% more TP, 20-30% more TRP and 61-77% more than MBF formulations 1, 2, and 3 in a total of 2.0 liters of leachate after 71 days. The concentration and amount of NO3 leached among SRF and MBF formulations 1 and 2 did not differ. The SRF treatment leached 34% less NO3, than MBF3. Total plant weight did not differ among fertilizer treatments. Arbuscular mycorrhizal infection did not differ among plants receiving SRF and MBF formulations 1, 2 and 3. Although further greenhouse and field testing are called for, results of this initial investigation warrant further investigation of MBFs.