Le coefficient de compacite de Gravelius: analyse critique d'un indice de forme des bassins versants

被引:45
作者
Bendjoudi, H [1 ]
Hubert, P [1 ]
机构
[1] Univ Paris 06, UMR Sisyphe, Lab Geol Appl, F-75252 Paris 05, France
来源
HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES | 2002年 / 47卷 / 06期
关键词
drainage basin; shape index; Gravelius; morphology;
D O I
10.1080/02626660209493000
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Traditionally, to characterize a drainage basin, various shape indices are proposed that may be used for inter-basin comparison and possibly for estimation of unmeasured characteristics. The index most commonly referred to is the compactness coefficient proposed by Gravelius. This is the ratio of the perimeter of the watershed to the circumference of a circle whose area is equal to that of the given drainage basin. The fractal geometry approach makes the validity of such indices questionable. Indeed, in the above definition, the only well-defined size is the surface of the basin. Although there is, of course, uncertainty in its measurement, it is possible to determine, for example, its lower and upper bounds. The perimeter measurement, on the other hand, is completely dependent on its measurement gauge, and, thus, has no characteristics that might detract from the value of the indices calculated from it.
引用
收藏
页码:921 / 930
页数:10
相关论文
共 18 条
[1]  
[Anonymous], 1975, PRINCIPLES HYDROLOGY
[2]  
[Anonymous], HYDROLOGY
[3]  
[Anonymous], 1964, HDB APPL HYDROLOGY
[4]  
Bendjoudi H., 1998, Revue des Sciences de l'Eau, V11, P617
[5]   Multifractal point of view on rainfall intensity-duration-frequency curves [J].
Bendjoudi, H ;
Hubert, P ;
Schertzer, D ;
Lovejoy, S .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE A-SCIENCES DE LA TERRE ET DES PLANETES, 1997, 325 (05) :323-326
[6]   A NEW STANDARD FOR ESTIMATING DRAINAGE BASIN SHAPE [J].
CHORLEY, RJ ;
MALM, DEG ;
POGORZELSKI, HA .
AMERICAN JOURNAL OF SCIENCE, 1957, 255 (02) :138-141
[7]  
Gravelius H, 1914, GRUNDRISS GESAMTEN G, V1
[8]  
GRAY DM, 1972, MANUEL PRINCIPES HYD
[9]  
Horton RE, 1932, EOS T AM GEOPHYS UN, V13, P350
[10]  
LEMEHAUTE A, 1990, GEOMETRIES FRACTALS