Characterization of myelin ligand complexes with neuronal Nogo-66 receptor family members

被引:66
作者
Lauren, Juha
Hu, Fenghua
Chin, Joanna
Liao, Ji
Airaksinen, Matti S.
Strittmatter, Stephen M.
机构
[1] Yale Univ, Sch Med, Dept Neurol, New Haven, CT 06520 USA
[2] Yale Univ, Sch Med, Dept Neurobiol, New Haven, CT 06520 USA
[3] Univ Helsinki, Ctr Neurosci, FIN-00014 Helsinki, Finland
关键词
D O I
10.1074/jbc.M609797200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nogo, MAG, and OMgp are myelin-associated proteins that bind to a neuronal Nogo-66 receptor (NgR/NgR1) to limit axonal regeneration after central nervous system injury. Within Nogo-A, two separate domains are known interact with NgR1. NgR1 is the founding member of the three-member NgR family, whereas Nogo-A (RTN4A) belongs to a four-member reticulon family. Here, we systematically mapped the interactions between these superfamilies, demonstrating novel nanomolar interactions of RTN2 and RTN3 with NgR1. Because RTN3 is expressed in spinal cord white matter, it may have a role in myelin inhibition of axonal growth. Further analysis of the Nogo-A and NgR1 interactions revealed a novel third interaction site between the proteins, suggesting a trivalent Nogo-A interaction with NgR1. We also confirmed here that MAG binds to NgR2, but not to NgR3. Unexpectedly, we found that OMgp interacts with MAG with a higher affinity compared with NgR1. To better define how these multiple structurally distinct ligands bind to NgR1, we examined a series of Ala-substituted NgR1 mutants for ligand binding activity. We found that the core of the binding domain is centered in the middle of the concave surface of the NgR1 leucine-rich repeat domain and surrounded by differentially utilized residues. This detailed knowledge of the molecular interactions between NgR1 and its ligands is imperative when assessing options for development of NgR1-based therapeutics for central nervous system injuries.
引用
收藏
页码:5715 / 5725
页数:11
相关论文
共 41 条
[1]   Structure and axon outgrowth inhibitor binding of the Nogo-66 receptor and related proteins [J].
Barton, WA ;
Liu, BP ;
Tzvetkova, D ;
Jeffrey, PD ;
Fournier, AE ;
Sah, D ;
Cate, R ;
Strittmatter, SM ;
Nikolov, DB .
EMBO JOURNAL, 2003, 22 (13) :3291-3302
[2]   RECOVERY FROM SPINAL-CORD INJURY MEDIATED BY ANTIBODIES TO NEURITE GROWTH-INHIBITORS [J].
BREGMAN, BS ;
KUNKELBAGDEN, E ;
SCHNELL, L ;
DAI, HN ;
GAO, D ;
SCHWAB, ME .
NATURE, 1995, 378 (6556) :498-501
[3]   Nogo-A, -B, and -C are found on the cell surface and interact together in many different cell types [J].
Dodd, DA ;
Niederoest, B ;
Bloechlinger, S ;
Dupuis, L ;
Loeffler, JP ;
Schwab, ME .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (13) :12494-12502
[4]   Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth [J].
Domeniconi, M ;
Cao, ZU ;
Spencer, T ;
Sivasankaran, R ;
Wang, KC ;
Nikulina, E ;
Kimura, N ;
Cai, H ;
Deng, KW ;
Gao, Y ;
He, ZG ;
Filbin, MT .
NEURON, 2002, 35 (02) :283-290
[5]   Alkaline phosphatase fusions of ligands or receptors as in situ probes for staining of cells, tissues, and embryos [J].
Flanagan, JG ;
Cheng, HJ ;
Feldheim, DA ;
Hattori, M ;
Lu, Q ;
Vanderhaeghen, P .
APPLICATIONS OF CHIMERIC GENES AND HYBRID PROTEINS PT B, 2000, 327 :19-35
[6]  
Fournier AE, 2002, J NEUROSCI, V22, P8876
[7]   Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration [J].
Fournier, AE ;
GrandPre, T ;
Strittmatter, SM .
NATURE, 2001, 409 (6818) :341-346
[8]   Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein [J].
GrandPré, T ;
Nakamura, F ;
Vartanian, T ;
Strittmatter, SM .
NATURE, 2000, 403 (6768) :439-444
[9]   Nogo-66 receptor antagonist peptide promotes axonal regeneration [J].
GrandPré, T ;
Li, SX ;
Strittmatter, SM .
NATURE, 2002, 417 (6888) :547-551
[10]  
Habib AA, 1998, J NEUROCHEM, V70, P1704