An Analytical Solution to the Kinetics of Breakable Filament Assembly

被引:879
作者
Knowles, Tuomas P. J. [1 ,2 ]
Waudby, Christopher A. [3 ]
Devlin, Glyn L. [3 ]
Cohen, Samuel I. A. [3 ]
Aguzzi, Adriano [4 ]
Vendruscolo, Michele [3 ]
Terentjev, Eugene M. [2 ]
Welland, Mark E. [1 ]
Dobson, Christopher M. [3 ]
机构
[1] Univ Cambridge, Nanosci Ctr, Cambridge CB3 0FF, England
[2] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
[3] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
[4] Univ Zurich Hosp, Inst Neuropathol, CH-8091 Zurich, Switzerland
基金
英国工程与自然科学研究理事会;
关键词
AMYLOID FORMATION; AGGREGATION; NUCLEATION; POLYMERIZATION; MECHANISM; TIME;
D O I
10.1126/science.1178250
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present an analytical treatment of a set of coupled kinetic equations that governs the self-assembly of filamentous molecular structures. Application to the case of protein aggregation demonstrates that the kinetics of amyloid growth can often be dominated by secondary rather than by primary nucleation events. Our results further reveal a range of general features of the growth kinetics of fragmenting filamentous structures, including the existence of generic scaling laws that provide mechanistic information in contexts ranging from in vitro amyloid growth to the in vivo development of mammalian prion diseases.
引用
收藏
页码:1533 / 1537
页数:5
相关论文
共 28 条
[1]   Prion research: the next frontiers [J].
Aguzzi, A ;
Weissmann, C .
NATURE, 1997, 389 (6653) :795-798
[2]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[3]   Apolipoprotein C-II amyloid fibrils assemble via a reversible pathway that includes fibril breaking and rejoining [J].
Binger, Katrina J. ;
Pham, Chi L. L. ;
Wilson, Leanne M. ;
Bailey, Michael F. ;
Lawrence, Lynne J. ;
Schuck, Peter ;
Howlett, Geoffrey J. .
JOURNAL OF MOLECULAR BIOLOGY, 2008, 376 (04) :1116-1129
[4]   Molecular recycling within amyloid fibrils [J].
Carulla, N ;
Caddy, GL ;
Hall, DR ;
Zurdo, J ;
Gairí, M ;
Feliz, M ;
Giralt, E ;
Robinson, CV ;
Dobson, CM .
NATURE, 2005, 436 (7050) :554-558
[5]   Protein misfolding, functional amyloid, and human disease [J].
Chiti, Fabrizio ;
Dobson, Christopher M. .
ANNUAL REVIEW OF BIOCHEMISTRY, 2006, 75 :333-366
[6]   Mechanism of prion propagation: Amyloid growth occurs by monomer addition [J].
Collins, SR ;
Douglass, A ;
Vale, RD ;
Weissman, JS .
PLOS BIOLOGY, 2004, 2 (10) :1582-1590
[7]   Absolute correlation between lag time and growth rate in the spontaneous formation of several amyloid-like aggregates and fibrils [J].
Faendrich, Marcus .
JOURNAL OF MOLECULAR BIOLOGY, 2007, 365 (05) :1266-1270
[8]   Rapid amyloid fiber formation from the fast-folding WW domain FBP28 [J].
Ferguson, N ;
Berriman, J ;
Petrovich, M ;
Sharpe, TD ;
Finch, JT ;
Fersht, AR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (17) :9814-9819
[9]  
Ferrone F, 1999, METHOD ENZYMOL, V309, P256
[10]   KINETICS OF SICKLE HEMOGLOBIN POLYMERIZATION .2. A DOUBLE NUCLEATION MECHANISM [J].
FERRONE, FA ;
HOFRICHTER, J ;
EATON, WA .
JOURNAL OF MOLECULAR BIOLOGY, 1985, 183 (04) :611-631