Serum response factor binding sites differ in three human cell types

被引:65
作者
Cooper, Sara J. [1 ]
Trinklein, Nathan D. [1 ]
Nguyen, Loan [1 ]
Myers, Richard M. [1 ]
机构
[1] Stanford Univ, Dept Genet, Sch Med, Stanford, CA 94305 USA
关键词
D O I
10.1101/gr.5875007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The serum response factor (SRF) is essential for embryonic development and maintenance of muscle cells and neurons. The mechanism by which this factor controls these divergent pathways is unclear. Here we present a genome-wide view of occupancy of SRF at its binding sites with a focus on those that vary with cell type. We used chromatin immunoprecipitation (ChIP) in combination with human promoter microarrays to identify 216 putative SRF binding sites in the human genome. We performed independent quantitative PCR validation at over half of these sites that resulted in 146 sites we assert to be true binding sites at over 90% confidence. Nearly half of the sites are bound by SRF in only one of the three cell types we tested, providing strong evidence for the diverse roles for SRF in different cell types. We also explore possible mechanisms controlling differential binding of SRF in these cell types by assaying cofactor binding, DNA methylation, histone methylation, and histone acetylation at a subset of sites bound preferentially in smooth muscle cells. Although we did not see a strong correlation between SRF binding and epigenetics modifications, at these sites, we propose that SRF cofactors may play an important role in determining cell-dependent SRF binding sites. ELK4 (previously known as SAP-1 [SRF-associated protein-1]) is ubiquitously expressed. Therefore, we expected it to occupy sites where SRF binding is common in all cell types. Indeed, 90% of SRF sites also bound by ELK4 were common to all three cell types. Together, our data provide a more complete understanding of the regulatory network controlled by SRF.
引用
收藏
页码:136 / 144
页数:9
相关论文
共 55 条
[1]   Neuronal migration in the murine rostral migratory stream requires serum response factor [J].
Alberti, S ;
Krause, SM ;
Kretz, O ;
Philippar, U ;
Lemberger, T ;
Casanova, E ;
Wiebel, FF ;
Schwarz, H ;
Frotscher, M ;
Schütz, G ;
Nordheim, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (17) :6148-6153
[2]   Serum response factor is essential for mesoderm formation during mouse embryogenesis [J].
Arsenian, S ;
Weinhold, B ;
Oelgeschläger, M ;
Rüther, U ;
Nordheim, A .
EMBO JOURNAL, 1998, 17 (21) :6289-6299
[3]   MEME: discovering and analyzing DNA and protein sequence motifs [J].
Bailey, Timothy L. ;
Williams, Nadya ;
Misleh, Chris ;
Li, Wilfred W. .
NUCLEIC ACIDS RESEARCH, 2006, 34 :W369-W373
[4]   Role of the serum response factor in regulating contractile apparatus gene expression and sarcomeric integrity in cardiomyocytes [J].
Balza, RO ;
Misra, RP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (10) :6498-6510
[5]   Organization and myogenic restricted expression of the murine serum response factor gene - A role for autoregulation [J].
Belaguli, NS ;
Schildmeyer, LA ;
Schwartz, RJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (29) :18222-18231
[6]   Cyclase-associated protein 1 (CAP1) promotes cofilin-induced actin dynamics in mammalian nonmuscle cells [J].
Bertling, E ;
Hotulainen, P ;
Mattila, PK ;
Matilainen, T ;
Salminen, M ;
Lappalainen, P .
MOLECULAR BIOLOGY OF THE CELL, 2004, 15 (05) :2324-2334
[7]   Ensembl 2006 [J].
Birney, E. ;
Andrews, D. ;
Caccamo, M. ;
Chen, Y. ;
Clarke, L. ;
Coates, G. ;
Cox, T. ;
Cunningham, F. ;
Curwen, V. ;
Cutts, T. ;
Down, T. ;
Durbin, R. ;
Fernandez-Suarez, X. M. ;
Flicek, P. ;
Graf, S. ;
Hammond, M. ;
Herrero, J. ;
Howe, K. ;
Iyer, V. ;
Jekosch, K. ;
Kahari, A. ;
Kasprzyk, A. ;
Keefe, D. ;
Kokocinski, F. ;
Kulesha, E. ;
London, D. ;
Longden, I. ;
Melsopp, C. ;
Meidl, P. ;
Overduin, B. ;
Parker, A. ;
Proctor, G. ;
Prlic, A. ;
Rae, M. ;
Rios, D. ;
Redmond, S. ;
Schuster, M. ;
Sealy, I. ;
Searle, S. ;
Severin, J. ;
Slater, G. ;
Smedley, D. ;
Smith, J. ;
Stabenau, A. ;
Stalker, J. ;
Trevanion, S. ;
Ureta-Vidal, A. ;
Vogel, J. ;
White, S. ;
Woodwark, C. .
NUCLEIC ACIDS RESEARCH, 2006, 34 :D556-D561
[8]   Ets ternary complex transcription factors [J].
Buchwalter, G ;
Gross, C ;
Wasylyk, B .
GENE, 2004, 324 :1-14
[9]   Myocardin/MKL family of SRF coactivators: Key regulators of immediate early and muscle specific gene expression [J].
Cen, B ;
Selvaraj, A ;
Prywes, R .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2004, 93 (01) :74-82
[10]   Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival [J].
Chang, HY ;
Nuyten, DSA ;
Sneddon, JB ;
Hastie, T ;
Tibshirani, R ;
Sorlie, T ;
Dai, HY ;
He, YDD ;
van't Veer, LJ ;
Bartelink, H ;
van de Rijn, M ;
Brown, PO ;
van de Vijver, MJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (10) :3738-3743