Light-signalling pathways leading to the co-ordinated expression of HEMA1 and Lhcb during chloroplast development in Arabidopsis thaliana

被引:86
作者
McCormac, AC [1 ]
Terry, MJ [1 ]
机构
[1] Univ Southampton, Sch Biol Sci, Southampton SO16 7PX, Hants, England
关键词
aminolaevulinic acid; glutamyl-tRNA reductase; haem and chlorophyll synthesis; light regulation of gene expression; light-harvesting proteins;
D O I
10.1046/j.1365-313X.2002.01443.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
During de-etiolation, the co-ordinated synthesis of chlorophyll and the chlorophyll a/b-binding proteins is critical to the development of functional light-harvesting complexes. To understand how this co-ordination is achieved, we have made a detailed study of the light-regulated signalling pathways mediating the expression of the HEMA1 and Lhcb genes encoding glutamyl-tRNA reductase, the first committed enzyme of 5-aminolaevulinic acid formation, and chlorophyll a/b-binding proteins, respectively. To do this, we have screened 7 photoreceptor and 12 light-signalling mutants of Arabidopsis thaliana L. for induction of HEMA1 and Lhcb expression in continuous red, far-red and blue light and following a red pulse. We have categorised these mutants into two groups. The phyA, phyB, phyAphyB, cry1, cry2, cop1, det1, poc1, eid1, and far1 mutations lead to diverse effects on the light regulation of HEMA1, but affect Lhcb expression to a similar degree. The hy1, hy2, hy5, fin219, fhy1, fhy3, spa1, ndpk2, and pat1 mutants also affect light regulation of both HEMA1 and Lhcb expression, but with differences in the relative magnitude of the two responses. The fhy1 and fhy3 mutants show the most significant differences in light regulation between the two genes, with both showing a strong inhibition of HEMA1 expression under continuous red light. These results demonstrate that co-ordinated regulation of HEMA1 and Lhcb is largely achieved through parallel light regulation mediated by shared phytochrome- and crytochrome-signalling pathways. However, glutamyl-tRNA reductase is also required for the synthesis of other tetrapyrroles and this dual role may account for the observed differences in these light-signallin pathways.
引用
收藏
页码:549 / 559
页数:11
相关论文
共 50 条
[1]   HY4 GENE OF A-THALIANA ENCODES A PROTEIN WITH CHARACTERISTICS OF A BLUE-LIGHT PHOTORECEPTOR [J].
AHMAD, M ;
CASHMORE, AR .
NATURE, 1993, 366 (6451) :162-166
[2]   THE EFFECT OF LIGHT ON THE BIOSYNTHESIS OF THE LIGHT-HARVESTING CHLOROPHYLL A-B PROTEIN - EVIDENCE FOR THE REQUIREMENT OF CHLOROPHYLL A FOR THE STABILIZATION OF THE APOPROTEIN [J].
APEL, K ;
KLOPPSTECH, K .
PLANTA, 1980, 150 (05) :426-430
[3]   A deletion in the PHYD gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far-red light sensing [J].
Aukerman, MJ ;
Hirschfeld, M ;
Wester, L ;
Weaver, M ;
Clack, T ;
Amasino, RM ;
Sharrock, RA .
PLANT CELL, 1997, 9 (08) :1317-1326
[4]   fhy1 defines a branch point in phytochrome A signal transduction pathways for gene expression [J].
Barnes, SA ;
Quaggio, RB ;
Whitelam, GC ;
Chua, NH .
PLANT JOURNAL, 1996, 10 (06) :1155-1161
[5]  
Bolle C, 2000, GENE DEV, V14, P1269
[6]   eid1:: A new arabidopsis mutant hypersensitive in phytochrome A-dependent high-irradiance responses [J].
Büche, C ;
Poppe, C ;
Schäfer, E ;
Kretsch, T .
PLANT CELL, 2000, 12 (04) :547-558
[7]   Cryptochromes: Blue light receptors for plants and animals [J].
Cashmore, AR ;
Jarillo, JA ;
Wu, YJ ;
Liu, DM .
SCIENCE, 1999, 284 (5415) :760-765
[8]   Regulation of phytochrome B signaling by phytochrome A and FHY1 in Arabidopsis thaliana [J].
Cerdán, PD ;
Yanovsky, MJ ;
Reymundo, FC ;
Nagatani, A ;
Staneloni, RJ ;
Whitelam, GC ;
Casal, JJ .
PLANT JOURNAL, 1999, 18 (05) :499-507
[9]   Phytochrome signalling is mediated through nucleoside diphosphate kinase 2 [J].
Choi, G ;
Yi, H ;
Lee, J ;
Kwon, YK ;
Soh, MS ;
Shin, BC ;
Luka, Z ;
Hahn, TR ;
Song, PS .
NATURE, 1999, 401 (6753) :610-613
[10]   ARABIDOPSIS THALIANA MUTANT THAT DEVELOPS AS A LIGHT-GROWN PLANT IN THE ABSENCE OF LIGHT [J].
CHORY, J ;
PETO, C ;
FEINBAUM, R ;
PRATT, L ;
AUSUBEL, F .
CELL, 1989, 58 (05) :991-999