Mtt1 is a Upf1-like helicase that interacts with the translation termination factors and whose overexpression can modulate termination efficiency

被引:34
作者
Czaplinski, K
Majlesi, N
Banerjee, T
Peltz, SW [1 ]
机构
[1] Univ Med & Dent New Jersey, Robert Wood Johnson Med Sch, Dept Mol Genet & Microbiol, Piscataway, NJ 08854 USA
[2] Rutgers State Univ, Grad Program Cell & Dev Biol, Piscataway, NJ 08854 USA
[3] Canc Inst New Jersey, Piscataway, NJ 08854 USA
关键词
helicase; nonsense-mediated mRNA decay; release factor; RNA; translation termination;
D O I
10.1017/S1355838200992392
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Translation termination is the final step that completes the synthesis of a polypeptide. Premature translation termination by introduction of a nonsense mutation leads to the synthesis of a truncated protein. We report the identification and characterization of the product of the MTT1 gene, a helicase belonging to the Upf1-like family of helicases that is involved in modulating translation termination. MTT1 is homologous to UPF1, a factor previously shown to function in both mRNA turnover and translation termination. Overexpression of MTT1 induced a nonsense suppression phenotype in a wild-type yeast strain. Nonsense suppression is apparently not due to induction of [PSI+], even though cooverexpression of HSP104 alleviated the nonsense suppression phenotype observed in cells overexpressing MTT1, suggesting a more direct role of Hsp104p in the translation termination process. The MTT1 gene product was shown to interact with translation termination factors and is localized to polysomes. Taken together, these results indicate that at least two members of a family of RNA helicases modulate translation termination efficiency in cells.
引用
收藏
页码:730 / 743
页数:14
相关论文
共 93 条
[1]   A METHOD FOR GENE DISRUPTION THAT ALLOWS REPEATED USE OF URA3 SELECTION IN THE CONSTRUCTION OF MULTIPLY DISRUPTED YEAST STRAINS [J].
ALANI, E ;
CAO, L ;
KLECKNER, N .
GENETICS, 1987, 116 (04) :541-545
[2]  
ALLROBYN JA, 1990, GENETICS, V124, P505
[3]   NAM7 NUCLEAR GENE ENCODES A NOVEL MEMBER OF A FAMILY OF HELICASES WITH A ZN-LIGAND MOTIF AND IS INVOLVED IN MITOCHONDRIAL FUNCTIONS IN SACCHAROMYCES-CEREVISIAE [J].
ALTAMURA, N ;
GROUDINSKY, O ;
DUJARDIN, G ;
SLONIMSKI, PP .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 224 (03) :575-587
[4]  
Anderson JSJ, 1996, CURR BIOL, V6, P780
[5]   Cloning and characterization of HUPF1, a human homolog of the Saccharomyces cerevisiae nonsense mRNA-reducing UPF1 protein [J].
Applequist, SE ;
Selg, M ;
Raman, C ;
Jack, HM .
NUCLEIC ACIDS RESEARCH, 1997, 25 (04) :814-821
[6]   Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice [J].
Barton-Davis, ER ;
Cordier, L ;
Shoturma, DI ;
Leland, SE ;
Sweeney, HL .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 104 (04) :375-381
[7]  
Bean DW, 1997, YEAST, V13, P1465, DOI 10.1002/(SICI)1097-0061(199712)13:15<1465::AID-YEA193>3.0.CO
[8]  
2-U
[9]  
BEAN DW, 1993, J BIOL CHEM, V268, P21783
[10]   Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line [J].
Bedwell, DM ;
Kaenjak, A ;
Benos, DJ ;
Bebok, Z ;
Bubien, JK ;
Hong, J ;
Tousson, A ;
Clancy, JP ;
Sorscher, EJ .
NATURE MEDICINE, 1997, 3 (11) :1280-1284