Control of bud activation by an auxin transport switch

被引:275
作者
Prusinkiewicz, Przemyslaw [1 ]
Crawford, Scott [2 ]
Smith, Richard S. [1 ]
Ljung, Karin [3 ]
Bennett, Tom [2 ]
Ongaro, Veronica [2 ]
Leyser, Ottoline [2 ]
机构
[1] Univ Calgary, Dept Comp Sci, Calgary, AB T2N 1N4, Canada
[2] Univ York, Dept Biol, York YO10 5YW, N Yorkshire, England
[3] Swedish Univ Agr Sci, Dept Forest Genet & Plant Physiol, Umea Plant Sci Ctr, SE-90183 Umea, Sweden
基金
瑞典研究理事会; 加拿大自然科学与工程研究理事会; 英国生物技术与生命科学研究理事会;
关键词
auxin transport canalization; dynamic system; MAX; shoot branching; simulation model; PISUM-SATIVUM-L; CYTOKININ BIOSYNTHESIS; ARABIDOPSIS-THALIANA; GROWTH; INHIBITION; PLANTS; MODEL; ACTS; POLARITY; MUTANT;
D O I
10.1073/pnas.0906696106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In many plant species only a small proportion of buds yield branches. Both the timing and extent of bud activation are tightly regulated to produce specific branching architectures. For example, the primary shoot apex can inhibit the activation of lateral buds. This process is termed apical dominance and is dependent on the plant hormone auxin moving down the main stem in the polar auxin transport stream. We use a computational model and mathematical analysis to show that apical dominance can be explained in terms of an auxin transport switch established by the temporal precedence between competing auxin sources. Our model suggests a mechanistic basis for the indirect action of auxin in bud inhibition and captures the effects of diverse genetic and physiological manipulations. In particular, the model explains the surprising observation that highly branched Arabidopsis phenotypes can exhibit either high or low auxin transport.
引用
收藏
页码:17431 / 17436
页数:6
相关论文
共 44 条
[1]   DOES HERBIVORY BENEFIT PLANTS - A REVIEW OF THE EVIDENCE [J].
BELSKY, AJ .
AMERICAN NATURALIST, 1986, 127 (06) :870-892
[2]   Local, efflux-dependent auxin gradients as a common module for plant organ formation [J].
Benková, E ;
Michniewicz, M ;
Sauer, M ;
Teichmann, T ;
Seifertová, D ;
Jürgens, G ;
Friml, J .
CELL, 2003, 115 (05) :591-602
[3]   The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport [J].
Bennett, T ;
Sieberer, T ;
Willett, B ;
Booker, J ;
Luschnig, C ;
Leyser, O .
CURRENT BIOLOGY, 2006, 16 (06) :553-563
[4]   Auxin acts in xylem-associated or medullary cells to mediate apical dominance [J].
Booker, J ;
Chatfield, S ;
Leyser, O .
PLANT CELL, 2003, 15 (02) :495-507
[5]   Strigolactone Acts Downstream of Auxin to Regulate Bud Outgrowth in Pea and Arabidopsis [J].
Brewer, Philip B. ;
Dun, Elizabeth A. ;
Ferguson, Brett J. ;
Rameau, Catherine ;
Beveridge, Christine A. .
PLANT PHYSIOLOGY, 2009, 150 (01) :482-493
[6]   APICAL DOMINANCE [J].
CLINE, MG .
BOTANICAL REVIEW, 1991, 57 (04) :318-358
[7]   NAA restores apical dominance in the axr3-1 mutant of Arabidopsis thaliana [J].
Cline, MG ;
Chatfield, SP ;
Leyser, O .
ANNALS OF BOTANY, 2001, 87 (01) :61-65
[8]   The genetics of geometry [J].
Coen, E ;
Rolland-Lagan, AG ;
Matthews, M ;
Bangham, JA ;
Prusinkiewicz, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (14) :4728-4735
[9]   Computer simulations reveal properties of the cell-cell signaling network at the shoot apex in Arabidopsis [J].
de Reuille, PB ;
Bohn-Courseau, I ;
Ljung, K ;
Morin, H ;
Carraro, N ;
Godin, C ;
Traas, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (05) :1627-1632
[10]   Self-organization of the vascular system in plant leaves: Inter-dependent dynamics of auxin flux and carrier proteins [J].
Feugier, FG ;
Mochizuki, A ;
Iwasa, Y .
JOURNAL OF THEORETICAL BIOLOGY, 2005, 236 (04) :366-375