A model is presented for the early (retinal) stages of temporal processing of light inputs in the visual system. The model consists of a sequence of three adaptation processes, with two instantaneous nonlinearities in between. The three adaptation processes are, in order of processing of the light input: a divisive light adaptation, a subtractive light adaptation, and a contrast gain control. Divisive light adaptation is modeled by two gain controls. The first uf these is a fast feedback loop with square-root behavior, the second a slow feedback loop with logarithm-like behavior. This can explain several aspects of the temporal behavior of photoreceptor outputs. Subtractive light adaptation is modeled by a high-pass filter equivalent to a fractional differentiation, and it can explain the attenuation of low frequencies observed in ganglion cell responses. Contrast gain control in the model is fast (Victor, 1987), and can explain the decreased detectability of test signals that an superimposed on dynamic backgrounds. We determine psychophysical detection thresholds for brief test pulses that are presented on flickering backgrounds, for a wide range of temporal modulation frequencies of these backgrounds. The model can explain the psychophysical data for the full range of modulation frequencies tested, as well as detection thresholds obtained for test pulses on backgrounds with increment and decrement steps in intensity.