NuA4 subunit yng2 function in intra-S-phase DNA damage response

被引:107
作者
Choy, JS
Kron, SJ
机构
[1] Univ Chicago, Ctr Mol Oncol, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Mol Genet & Cell Biol, Chicago, IL 60637 USA
关键词
D O I
10.1128/MCB.22.23.8215-8225.2002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
While regulated transcription requires acetylation of histone N-terminal tails to promote an open chromatin conformation, a similar role for histone acetylation in DNA replication and/or repair remains to be established. Cells lacking the NuA4 subunit Yng2 are viable but critically deficient for genome-wide nucleosomal histone H4 acetylation. We found that yng2 mutants are specifically sensitized to DNA damage in S phase induced by cdc8 or cdc9 mutations, hydroxy-urea, camptothecin, or methylmethane sulfonate (MMS). In yng2, MMS treatment causes a persistent Mec1-dependent intra-S-phase checkpoint delay characterized by slow DNA repair. Restoring H4 acetylation with the histone deacetylase inhibitor trichostatin A promotes checkpoint recovery.. In turn, mutants lacking the histone H3-specific acetyltransferase GCN5 are similarly sensitive to intra-S-phase DNA damage. The inviability of gcn5 yng2 double mutants suggests overlapping roles for H3 and H4 acetylation in DNA replication and repair. Paradoxically, haploid yng2 mutants do not tolerate mutations in genes important for nonhomologous end joining repair yet remain proficient for homologous recombination. Our results implicate nucleosomal histone acetylation in maintaining genomic integrity during chromosomal replication.
引用
收藏
页码:8215 / 8225
页数:11
相关论文
共 52 条
[1]  
Alexiadis V, 1997, CHROMOSOMA, V105, P324
[2]   NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p [J].
Allard, S ;
Utley, RT ;
Savard, J ;
Clarke, A ;
Grant, P ;
Brandl, CJ ;
Pillus, L ;
Workman, JL ;
Côté, J .
EMBO JOURNAL, 1999, 18 (18) :5108-5119
[3]   AN IMPROVED ASSAY FOR DNA-LIGASE REVEALS TEMPERATURE-SENSITIVE ACTIVITY IN CDC9 MUTANTS OF SACCHAROMYCES-CEREVISIAE [J].
BARKER, DG ;
JOHNSON, AL ;
JOHNSTON, LH .
MOLECULAR & GENERAL GENETICS, 1985, 200 (03) :458-462
[4]   The Cdc7 protein kinase is required for origin firing during S phase [J].
Bousset, K ;
Diffley, JFX .
GENES & DEVELOPMENT, 1998, 12 (04) :480-490
[5]   UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation [J].
Brand, M ;
Moggs, JG ;
Oulad-Abdelghani, M ;
Lejeune, F ;
Dilworth, FJ ;
Stevenin, J ;
Almouzni, G ;
Tora, L .
EMBO JOURNAL, 2001, 20 (12) :3187-3196
[6]   Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation [J].
Brownell, JE ;
Zhou, JX ;
Ranalli, T ;
Kobayashi, R ;
Edmondson, DG ;
Roth, SY ;
Allis, CD .
CELL, 1996, 84 (06) :843-851
[7]   LARGE-SCALE ANALYSIS OF GENE-EXPRESSION, PROTEIN LOCALIZATION, AND GENE DISRUPTION SACCHAROMYCES-CEREVISIAE [J].
BURNS, N ;
GRIMWADE, B ;
ROSSMACDONALD, PB ;
CHOI, EY ;
FINBERG, K ;
ROEDER, GS ;
SNYDER, M .
GENES & DEVELOPMENT, 1994, 8 (09) :1087-1105
[8]   Signaling to chromatin through histone modifications [J].
Cheung, P ;
Allis, CD ;
Sassone-Corsi, P .
CELL, 2000, 103 (02) :263-271
[9]   REPAIR OF MMS-INDUCED DNA DOUBLE-STRAND BREAKS IN HAPLOID CELLS OF SACCHAROMYCES-CEREVISIAE, WHICH REQUIRES THE PRESENCE OF A DUPLICATE GENOME [J].
CHLEBOWICZ, E ;
JACHYMCZYK, WJ .
MOLECULAR & GENERAL GENETICS, 1979, 167 (03) :279-286
[10]   Yng2p-dependent NuA4 histone H4 acetylation activity is required for mitotic and meiotic progression [J].
Choy, JS ;
Tobe, BTD ;
Huh, JH ;
Kron, SJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (47) :43653-43662