Gradient convergence in gradient methods with errors

被引:304
作者
Bertsekas, DP [1 ]
Tsitsiklis, JN [1 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
关键词
gradient methods; incremental gradient methods; stochastic approximation; gradient convergence;
D O I
10.1137/S1052623497331063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the gradient method x(t+1) = x(t) + gamma(t)(s(t) + w(t)), where s(t) is a descent direction of a function f : R-n --> R and w(t) is a deterministic or stochastic error. We assume that del f is Lipschitz continuous, that the stepsize gamma(t) diminishes to 0, and that s(t) and w(t) satisfy standard conditions. We show that either f(x(t)) --> -infinity or f(x(t)) converges to a finite value and del f(x(t)) --> 0 (with probability 1 in the stochastic case), and in doing so, we remove various boundedness conditions that are assumed in existing results, such as boundedness from below of f, boundedness of del f(x(t)), or boundedness of x(t).
引用
收藏
页码:627 / 642
页数:16
相关论文
共 19 条
[1]  
[Anonymous], AUTOM REMOTE CONTROL
[2]  
Benveniste A, 1990, Adaptive algorithms and stochastic approximations
[3]  
Bertsekas D. P., 1996, Neuro Dynamic Programming, V1st
[4]  
Bertsekas Dimitri P., 1989, PARALLEL DISTRIBUTED
[5]   A new class of incremental gradient methods for least squares problems [J].
Bertsekas, DP .
SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (04) :913-926
[6]   Asynchronous stochastic approximations [J].
Borkar, VS .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (03) :840-851
[7]   General results on the convergence of stochastic algorithms [J].
Delyon, B .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (09) :1245-1255
[8]  
GAIVORONSKI AA, 1994, OPTIMIZATION METHODS, V4, P117, DOI DOI 10.1080/10556789408805582
[9]  
GRIPPO L, 1994, OPTIM METHOD SOFTW, V4, P135, DOI 10.1080/10556789408805583.3
[10]  
KUSHNER HJ, 1996, STOCHASTIC APPROXIMA