Discovering calendar-based temporal association rules

被引:79
作者
Li, YJ [1 ]
Ning, P
Wang, XS
Jajodia, S
机构
[1] George Mason Univ, Ctr Secure Informat Syst, Fairfax, VA 22030 USA
[2] N Carolina State Univ, Dept Comp Sci, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
knowledge discovery; temporal data mining; association rule; time granularity;
D O I
10.1016/S0169-023X(02)00135-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study the problem of mining association rules and related time intervals, where an association rule holds either in all or some of the intervals. To restrict to meaningful time intervals, we use calendar schemas and their calendar-based patterns. A calendar schema example is (year, month, day) and a calendar-based pattern within the schema is ((*), 3, 15), which represents the set of time intervals each corresponding to the 15th day of a March. Our focus is finding efficient algorithms for this mining problem by extending the well-known Apriori algorithm with effective pruning techniques. We evaluate our techniques via experiments. (C) 2002 Published by Elsevier Science B.V.
引用
收藏
页码:193 / 218
页数:26
相关论文
共 34 条
[1]   Parallel mining of association rules [J].
Agrawal, R ;
Shafer, JC .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 1996, 8 (06) :962-969
[2]  
Agrawal R., 1993, SIGMOD Record, V22, P207, DOI 10.1145/170036.170072
[3]  
AGRAWAL R, 1995, PROC INT CONF DATA, P3, DOI 10.1109/ICDE.1995.380415
[4]  
Agrawal R, 1994, 9839 RJ IBM ALM RES, ppp487
[5]  
Agrawal R., 1994, P 20 INT C VER LARG, V1215, P487
[6]  
Ale J. M., 2000, Proceedings of the 2000 ACM symposium on Applied computing, Vp, P294
[7]  
[Anonymous], 1997, P ACM SIGMOD INT C M
[8]  
[Anonymous], 1995, P 1 SIGKDD INT C KNO
[9]  
[Anonymous], P INT C VER LARG DAT
[10]   Constraint-based rule mining in large, dense databases [J].
Bayardo, RJ ;
Agrawal, R ;
Gunopulos, D .
15TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, PROCEEDINGS, 1999, :188-197