Wannier functions analysis of the nonlinear Schrodinger equation with a periodic potential

被引:201
作者
Alfimov, GL [1 ]
Kevrekidis, PG
Konotop, VV
Salerno, M
机构
[1] FV Lukins Inst Phys Problems, Moscow 103460, Russia
[2] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[3] Univ Lisbon, Dept Fis, P-1649003 Lisbon, Portugal
[4] Univ Lisbon, Ctr Fis Mat Condensada, P-1649003 Lisbon, Portugal
[5] Univ Salerno, Dipartimento Fis ER Caianiello, I-84081 Baronissi, Salerno, Italy
[6] INFM, Unita Salerno, Salerno, Italy
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 04期
关键词
D O I
10.1103/PhysRevE.66.046608
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In the present paper we use the Wannier function basis to construct lattice approximations of the nonlinear Schrodinger equation with a periodic potential. We show that the nonlinear Schrodinger equation with a periodic potential is equivalent to a vector lattice with long-range interactions. For the case-example of the cosine potential we study the validity of the so-called tight-binding approximation, i.e., the approximation when nearest neighbor interactions are dominant. The results are relevant to the Bose-Einstein condensate theory as well as to other physical systems, such as, for example, electromagnetic wave propagation in nonlinear photonic crystals.
引用
收藏
页数:6
相关论文
共 22 条
[1]   Nonlinear excitations in arrays of Bose-Einstein condensates [J].
Abdullaev, FK ;
Baizakov, BB ;
Darmanyan, SA ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW A, 2001, 64 (04) :436061-4360610
[2]   On the existence of gap solitons [J].
Alfimov, G ;
Konotop, VV .
PHYSICA D-NONLINEAR PHENOMENA, 2000, 146 (1-4) :307-327
[3]   Matter solitons in Bose-Einstein condensates with optical lattices [J].
Alfimov, GL ;
Konotop, VV ;
Salerno, M .
EUROPHYSICS LETTERS, 2002, 58 (01) :7-13
[4]   Macroscopic quantum interference from atomic tunnel arrays [J].
Anderson, BP ;
Kasevich, MA .
SCIENCE, 1998, 282 (5394) :1686-1689
[5]   Composite catalyst surfaces: Effect of inert and active heterogeneities on pattern formation [J].
Bar, M ;
Bangia, AK ;
Kevrekidis, IG ;
Haas, G ;
Rotermund, HH ;
Ertl, G .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (49) :19106-19117
[6]   Collective excitations of a periodic Bose condensate in the Wannier representation [J].
Chiofalo, ML ;
Polini, M ;
Tosi, MP .
EUROPEAN PHYSICAL JOURNAL D, 2000, 11 (03) :371-378
[7]   STATIONARY WAVES IN A NONLINEAR PERIODIC MEDIUM - STRONG RESONANCES AND LOCALIZED STRUCTURES .1. THE DISCRETE MODEL [J].
COSTE, J ;
PEYRAUD, J .
PHYSICAL REVIEW B, 1989, 39 (18) :13086-13095
[8]   Theory of Bose-Einstein condensation in trapped gases [J].
Dalfovo, F ;
Giorgini, S ;
Pitaevskii, LP ;
Stringari, S .
REVIEWS OF MODERN PHYSICS, 1999, 71 (03) :463-512
[9]   Cold bosonic atoms in optical lattices [J].
Jaksch, D ;
Bruder, C ;
Cirac, JI ;
Gardiner, CW ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (15) :3108-3111
[10]   Heterogeneous versus discrete mapping problem [J].
Kevrekidis, P.G. ;
Kevrekidis, I.G. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (5 II) :1-056624