Ion conduction through MscS as determined by electrophysiology and simulation

被引:102
作者
Sotomayor, Marcos
Vasquez, Valeria
Perozo, Eduardo
Schulten, Klaus [1 ]
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[2] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[3] Univ Chicago, Inst Mol Pediat Sci, Chicago, IL 60637 USA
[4] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA
[5] Univ Virginia, Dept Mol Physiol & Biol Phys, Charlottesville, VA USA
关键词
D O I
10.1529/biophysj.106.095232
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The mechanosensitive channel of small conductance (MscS) is a membrane protein thought to act as a safety valve in bacteria, regulating the release of ions and small solutes when gated by membrane tension under challenging osmotic conditions. The influence of voltage on channel activation and the functional state depicted by the available crystal structure of MscS remain debated. Therefore, in an effort to relate electrophysiological measurements on MscS and properties of the MscS crystal conformation, we report here MscS's response to voltage and pressure as determined by patch-clamp experiments, as well as MscS electrostatics and transport properties as determined through all-atom molecular dynamics simulations of the protein embedded in a lipid bilayer, a 224,000-atom system. The experiments reveal that MscS is a slightly anion-selective channel with a conductance of similar to 1 ns, activated by pressure and inactivated in a voltage-dependent manner. On the other hand, the simulations, covering over 200 ns and including biasing electrostatic potentials, show that MscS restrained to the crystal conformation exhibits low conductance; unrestrained it increases the channel radius upon application of a large electrostatic bias and exhibits then ion conduction that matches experimentally determined conductances. The simulated conductance stems mainly from Cl- ions.
引用
收藏
页码:886 / 902
页数:17
相关论文
共 73 条
[1]   The "dashpot" mechanism of stretch-dependent gating in MscS [J].
Akitake, B ;
Anishkin, A ;
Sukharev, S .
JOURNAL OF GENERAL PHYSIOLOGY, 2005, 125 (02) :143-154
[2]   Imaging α-hemolysin with molecular dynamics:: Ionic conductance, osmotic permeability, and the electrostatic potential map [J].
Aksimentiev, A ;
Schulten, K .
BIOPHYSICAL JOURNAL, 2005, 88 (06) :3745-3761
[3]   Microscopic kinetics of DNA translocation through synthetic nanopores [J].
Aksimentiev, A ;
Heng, JB ;
Timp, G ;
Schulten, K .
BIOPHYSICAL JOURNAL, 2004, 87 (03) :2086-2097
[4]   Microbial mechanosensation [J].
Anishkin, A ;
Kung, C .
CURRENT OPINION IN NEUROBIOLOGY, 2005, 15 (04) :397-405
[5]   Explicit channel conductance: Can it be computed? [J].
Anishkin, A ;
Sukharev, S .
BIOPHYSICAL JOURNAL, 2005, 88 (06) :3742-3743
[6]   Water dynamics and dewetting transitions in the small mechanosensitive channel MscS [J].
Anishkin, A ;
Sukharev, S .
BIOPHYSICAL JOURNAL, 2004, 86 (05) :2883-2895
[7]   Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel [J].
Bass, RB ;
Strop, P ;
Barclay, M ;
Rees, DC .
SCIENCE, 2002, 298 (5598) :1582-1587
[8]   The influence of geometry, surface character, and flexibility on the permeation of ions and water through biological pores [J].
Beckstein, O ;
Sansom, MSP .
PHYSICAL BIOLOGY, 2004, 1 (1-2) :42-52
[9]   Liquid-vapor oscillations of water in hydrophobic nanopores [J].
Beckstein, O ;
Sansom, MSP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (12) :7063-7068
[10]   A PATCH-CLAMP STUDY OF ION CHANNELS OF INNER AND OUTER MEMBRANES AND OF CONTACT ZONES OF ESCHERICHIA-COLI, FUSED INTO GIANT LIPOSOMES - PRESSURE-ACTIVATED CHANNELS ARE LOCALIZED IN THE INNER MEMBRANE [J].
BERRIER, C ;
COULOMBE, A ;
HOUSSIN, C ;
GHAZI, A .
FEBS LETTERS, 1989, 259 (01) :27-32