Cardiac titin: Structure, functions and role in disease

被引:96
作者
LeWinter, Martin M.
Wu, Yiming
Labeit, Siegfried
Granzier, Henk
机构
[1] Univ Vermont, Dept Med, Burlington, VT USA
[2] Univ Vermont, Cardiol Unit, Burlington, VT USA
[3] Washington State Univ, Dept vet & Comparat Anat Pharmacol & Physiol, Pullman, WA 99164 USA
[4] Univ Klinikum Mannheim, Inst Anasthesiol & Operat Intensmed, D-68167 Mannheim, Germany
关键词
titin; passive myocardial stiffness; restoring forces; diastolic ventricular function;
D O I
10.1016/j.cca.2006.06.035
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
Titin is a giant sarcomeric protein found in both cardiac and skeletal muscle. In the heart, the structure, functions and role of titin in disease have begun to be elucidated over the last decade. Titin's N-terminus is anchored in the Z-disk while C-terminal domains are bound to the thick filament. The I-band segment is a complex molecular spring consisting of PEVK and tandem Ig segments as well as variable N2B and N2A elements. The latter determine titin's two isoforms. N2B alone is present in the smaller and stiffer N2B isoform and both N2A and N2B elements are present in the larger, more compliant N2BA isoform. Large mammals co-express both isoforms, while normal rodents have virtually exclusively N2B titin. With sarcomere stretch, titin's I-band segment elongates and develops passive tension. Titin is the predominant determinant of cardiomyocyte passive tension over the physiologic sarcomere length range. With contraction below slack length, the thick filament drags titin in the opposite direction such that extension of the spring results in generation of a restoring force resulting in elastic recoil. In addition to its mechanical properties, a role is emerging for titin as a major biomechanical sensing and signaling molecule. Moreover, recent studies indicate that titin undergoes dynamic isoform and possibly phosphorylation changes in disease. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 84 条
[1]   MUSCLE LIM PROTEIN, A NOVEL ESSENTIAL REGULATOR OF MYOGENESIS, PROMOTES MYOGENIC DIFFERENTIATION [J].
ARBER, S ;
HALDER, G ;
CARONI, P .
CELL, 1994, 79 (02) :221-231
[2]   Binding of an ankyrin-1 isoform to obscurin suggests a molecular link between the sarcoplasmic reticulum and myofibrils in striated muscles [J].
Bagnato, P ;
Barone, V ;
Giacomello, E ;
Rossi, D ;
Sorrentino, V .
JOURNAL OF CELL BIOLOGY, 2003, 160 (02) :245-253
[3]   The complete gene sequence of titin, expression of an unusual ≈700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system [J].
Bang, ML ;
Centner, T ;
Fornoff, F ;
Geach, AJ ;
Gotthardt, M ;
McNabb, M ;
Witt, CC ;
Labeit, D ;
Gregorio, CC ;
Granzier, H ;
Labeit, S .
CIRCULATION RESEARCH, 2001, 89 (11) :1065-1072
[4]   Effects of dobutamine on left ventricular restoring forces [J].
Bell, SP ;
Fabian, J ;
LeWinter, MM .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1998, 275 (01) :H190-H194
[5]   Alterations in the determinants of diastolic suction during pacing tachycardia [J].
Bell, SP ;
Nyland, L ;
Tischler, MD ;
McNabb, M ;
Granzier, H ;
LeWinter, MM .
CIRCULATION RESEARCH, 2000, 87 (03) :235-240
[6]   Identification of ubiquitin ligases required for skeletal muscle atrophy [J].
Bodine, SC ;
Latres, E ;
Baumhueter, S ;
Lai, VKM ;
Nunez, L ;
Clarke, BA ;
Poueymirou, WT ;
Panaro, FJ ;
Na, EQ ;
Dharmarajan, K ;
Pan, ZQ ;
Valenzuela, DM ;
DeChiara, TM ;
Stitt, TN ;
Yancopoulos, GD ;
Glass, DJ .
SCIENCE, 2001, 294 (5547) :1704-1708
[7]   Cardiomyocyte stiffness in Diastolic heart failure [J].
Borbély, A ;
van der Velden, J ;
Papp, Z ;
Bronzwaer, JGF ;
Edes, I ;
Stienen, GJM ;
Paulus, WJ .
CIRCULATION, 2005, 111 (06) :774-781
[8]   Association of the chaperone αB-crystallin with titin in heart muscle [J].
Bullard, B ;
Ferguson, C ;
Minajeva, A ;
Leake, MC ;
Gautel, M ;
Labeit, D ;
Ding, LL ;
Labeit, S ;
Horwitz, J ;
Leonard, KR ;
Linke, WA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (09) :7917-7924
[9]   Cycling cross-bridges increase myocardial stiffness at submaximal levels of Ca2+ activation [J].
Campbell, KS ;
Patel, JR ;
Moss, RL .
BIOPHYSICAL JOURNAL, 2003, 84 (06) :3807-3815
[10]   Length modulation of active force in rat cardiac myocytes: is titin the sensor? [J].
Cazorla, O ;
Vassort, G ;
Garnier, D ;
Le Guennec, JY .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 1999, 31 (06) :1215-1227