A metabolite of equine estrogens, 4-hydroxyequilenin, induces DNA damage and apoptosis in breast cancer cell lines

被引:71
作者
Chen, YM
Liu, XM
Pisha, E
Constantinou, AI
Hua, YS
Shen, LX
van Breemen, RB
Elguindi, EC
Blond, SY
Zhang, FG
Bolton, JL
机构
[1] Univ Illinois, Coll Pharm, Dept Med Chem & Pharmacognosy M C 781, Chicago, IL 60612 USA
[2] Univ Illinois, Coll Med, Dept Surg Oncol M C 820, Chicago, IL 60612 USA
[3] Univ Illinois, Coll Pharm, Ctr Pharmaceut Biotechnol M C 870, Chicago, IL 60612 USA
关键词
D O I
10.1021/tx990186j
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Estrogen replacement therapy has been correlated with an increased risk of developing breast or endometrial cancer. 4-Hydroxyequilenin (4-OHEN) is a catechol metabolite of equilenin which is a minor component of the estrogen replacement formulation marketed under the name of Premarin (Wyeth-Ayerst). Previously, we showed that 4-OHEN autoxidizes to quinoids which can consume reducing equivalents and molecular oxygen, are potent cytotoxins, and cause a variety of damage to DNA, including formation of bulky stable adducts, apurinic sites, and oxidation of the phosphate-sugar backbone and purine/pyrimidine bases [Bolton, J. L., Pisha, E., Zhang, F., and Qiu, S. (1998) Chem. Res. Toxicol. 11, 1113-1127]. All of these deleterious effects could contribute to the cytotoxic and genotoxic effects of equilenin in vivo. In the study presented here, we examined the relative toxicity of 4-OHEN in estrogen receptor (ER) positive cells (MCF-7 and S30) compared to that in breast cancer cells without the estrogen receptor (MDA-MB-231). The data showed that 4-OHEN was 4-fold more toxic to MCF-7 cells (LC50 = 6.0 +/- 0.2 mu M) and 6-fold more toxic to S30 cells (LC50 = 4.0 +/- 0.1 mu M) than to MDA-MB-231 cells (LC50 = 24 +/- 0.3 mu M). Using the single-cell gel electrophoresis assay (comet assay) to assess DNA damage, we found that 4-OHEN causes concentration-dependent DNA single-strand cleavage in all three cell lines, and this effect could be enhanced by agents which catalyze redox cycling (NADH) or deplete cellular GSH (diethyl maleate). In addition, the ER+ cell lines (MCF-7 and S30) were considerably more sensitive to induction of DNA damage by 4-OHEN than the ER- cells (MDA-MB-231). 4-OHEN also caused a concentration-dependent increase in the amount of mutagenic lesion 8-oxo-dG in the S30 cells as determined by LC/MS-MS. Cell morphology assays showed that 4-OHEN induces apoptosis in these cell lines. As observed with the toxicity assay and the comet assay, the ER+ cells were more sensitive to induction of apoptosis by 4-OHEN than MDA-MB-231 cells. Finally, the endogenous catechol estrogen metabolite 4-hydroxyestrone (4-OHE) was considerably less effective at inducing DNA damage and apoptosis in breast cancer cell lines than 4-OHEN. Our data suggest that the cytotoxic effects of 4-OHEN may be related to its ability to induce DNA damage and apoptosis in hormone sensitive cells in vivo, and these effects may be potentiated by the estrogen receptor.
引用
收藏
页码:342 / 350
页数:9
相关论文
共 46 条
[1]   Detection of DNA damage in human lymphocytes by alkaline single cell gel electrophoresis after exposure to benzene or benzene metabolites [J].
Andreoli, C ;
Leopardi, P ;
Crebelli, R .
MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 1997, 377 (01) :95-104
[2]   Role of quinoids in estrogen carcinogenesis [J].
Bolton, JL ;
Pisha, E ;
Zhang, FG ;
Qiu, SX .
CHEMICAL RESEARCH IN TOXICOLOGY, 1998, 11 (10) :1113-1127
[3]   Inhibition of glutathione S-transferase activity by the quinoid metabolites of equine estrogens [J].
Chang, MS ;
Zhang, FG ;
Shen, L ;
Pauss, N ;
Alam, I ;
van Breemen, RB ;
Blond, SY ;
Bolton, JL .
CHEMICAL RESEARCH IN TOXICOLOGY, 1998, 11 (07) :758-765
[4]   The equine estrogen metabolite 4-hydroxyequilenin causes DNA single-strand breaks and oxidation of DNA bases in vitro [J].
Chen, YM ;
Shen, L ;
Zhang, FG ;
Lau, SS ;
van Breemen, RB ;
Nikolic, D ;
Bolton, JL .
CHEMICAL RESEARCH IN TOXICOLOGY, 1998, 11 (09) :1105-1111
[5]   Relationship between estrogen levels, use of hormone replacement therapy, and breast cancer [J].
Colditz, GA .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 1998, 90 (11) :814-823
[6]   THE USE OF ESTROGENS AND PROGESTINS AND THE RISK OF BREAST-CANCER IN POSTMENOPAUSAL WOMEN [J].
COLDITZ, GA ;
HANKINSON, SE ;
HUNTER, DJ ;
WILLETT, WC ;
MANSON, JE ;
STAMPFER, MJ ;
HENNEKENS, C ;
ROSNER, B ;
SPEIZER, FE .
NEW ENGLAND JOURNAL OF MEDICINE, 1995, 332 (24) :1589-1593
[7]  
Dickancaite E, 1997, BIOCHEM MOL BIOL INT, V41, P987
[8]  
Eymin B, 1997, CANCER RES, V57, P686
[9]   THE COMET ASSAY - A COMPREHENSIVE REVIEW [J].
FAIRBAIRN, DW ;
OLIVE, PL ;
ONEILL, KL .
MUTATION RESEARCH-REVIEWS IN GENETIC TOXICOLOGY, 1995, 339 (01) :37-59
[10]   QUANTITATIVE HIGH-PERFORMANCE LIQUID-CHROMATOGRAPHY ANALYSIS OF DNA OXIDIZED INVITRO AND INVIVO [J].
FRENKEL, K ;
ZHONG, ZJ ;
WEI, HC ;
KARKOSZKA, J ;
PATEL, U ;
RASHID, K ;
GEORGESCU, M ;
SOLOMON, JJ .
ANALYTICAL BIOCHEMISTRY, 1991, 196 (01) :126-136