Ramp-Up-Phase Current-Profile Control of Tokamak Plasmas via Nonlinear Programming

被引:44
作者
Xu, C. [1 ]
Ou, Y. [1 ]
Dalessio, J. [1 ]
Schuster, E. [1 ]
Luce, T. C. [2 ]
Ferron, J. R. [2 ]
Walker, M. L. [2 ]
Humphreys, D. A. [2 ]
机构
[1] Lehigh Univ, Dept Mech Engn & Mech, Bethlehem, PA 18015 USA
[2] Gen Atom Co, San Diego, CA 92186 USA
基金
美国国家科学基金会;
关键词
Distributed parameter systems; nonlinear programming (NLP); proper orthogonal decomposition (POD); tokamak plasma control; REAL-TIME CONTROL; FEEDBACK-CONTROL; JET;
D O I
10.1109/TPS.2009.2037626
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The achievement of suitable toroidal-current-density profiles in tokamak plasmas plays an important role in enabling high fusion gain and noninductive sustainment of the plasma current for steady-state operation with improved magnetohydrodynamic stability. The evolution in time of the current profile is related to the evolution of the poloidal magnetic flux, which is modeled in normalized cylindrical coordinates using a partial differential equation (PDE) usually referred to as themagnetic flux diffusion equation. The dynamics of the plasma current density profile can be modified by the total plasma current and the power of the noninductive current drive. These two actuators, which are constrained not only in value and rate but also in their initial and final values, are used to drive the current profile as close as possible to a desired target profile at a specific final time. To solve this constrained finite-time open-loop PDE optimal control problem, model reduction based on proper orthogonal decomposition is combined with sequential quadratic programming in an iterative fashion. The use of a low-dimensional dynamical model dramatically reduces the computational effort and, therefore, the time required to solve the optimization problem, which is critical for a potential implementation of a real-time receding-horizon control strategy.
引用
收藏
页码:163 / 173
页数:11
相关论文
共 22 条
[1]  
Arnautu V., 1993, OPTIMAL CONTROL THEO
[2]   Feedback control of the lower hybrid power deposition profile on Tore Supra [J].
Barana, O. ;
Mazon, D. ;
Laborde, L. ;
Turco, F. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2007, 49 (07) :947-967
[3]   Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model [J].
Bergmann, M ;
Cordier, L ;
Brancher, JP .
PHYSICS OF FLUIDS, 2005, 17 (09) :1-21
[4]  
Blum J., 1988, NUMERICAL SIMULATION
[5]   Feedback control of the safety factor profille evolution during formation of an advanced tokamak discharge [J].
Ferron, J. R. ;
Gohill, P. ;
Greenfield, C. M. ;
Lohr, J. ;
Luce, T. C. ;
Makowski, M. A. ;
Mazon, D. ;
Murakami, M. ;
Petty, C. C. ;
Politzer, P. A. ;
Wade, M. R. .
NUCLEAR FUSION, 2006, 46 (10) :L13-L17
[6]  
Findeisen R., 2002, Control, 21st Benelux Meeting on Systems and Control, P1
[7]   THEORY OF PLASMA TRANSPORT IN TOROIDAL CONFINEMENT SYSTEMS [J].
HINTON, FL ;
HAZELTINE, RD .
REVIEWS OF MODERN PHYSICS, 1976, 48 (02) :239-308
[8]  
Holmes P., 1996, Turbulence, coherent structures, dynamical systems and symmetry
[9]   Control of the Burgers equation by a reduced-order approach using proper orthogonal decomposition [J].
Kunisch, K ;
Volkwein, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1999, 102 (02) :345-371
[10]   A model-based technique for integrated real-time profile control in the JET tokamak [J].
Laborde, L ;
Mazon, D ;
Moreau, D ;
Murari, A ;
Felton, R ;
Zabeo, L ;
Albanese, R ;
Ariola, M ;
Bucalossi, J ;
Crisanti, F ;
de Baar, M ;
de Tommasi, G ;
de Vries, P ;
Joffrin, E ;
Lennholm, M ;
Litaudon, X ;
Pironti, A ;
Tala, T ;
Tuccillo, A .
PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 (01) :155-183