G protein-coupled receptor (GPCR) activation is generally assumed to result in a significant structural rearrangement of the receptor, presumably involving the rigid body movement of transmembrane helices. We have investigated the activation of the GPCR rhodopsin by the construction and analysis of a mutant which contains a total of four disulfide bonds connecting the cytoplasmic ends of helices 1 and 7, and 3 and 5, and the extracellular ends of helices 3 and 4, and 5 and 6. Despite the constraints imposed by four disulfides, this "straitjacketed" receptor retains the ability to activate the G protein transducin and, therefore, provides insight into the molecular mechanism of the initial step in signal transduction of this important class of receptors.