1-methyl-4-phenylpyridinium affects fast axonal transport by actvation of caspase and protein kinase C

被引:98
作者
Morfini, G. [1 ]
Pigino, G.
Opalach, K.
Serulle, Y.
Moreira, J. E.
Sugimori, M.
Llinas, R. R.
Brady, S. T.
机构
[1] Univ Illinois, Dept Anat & Cell Biol, Chicago, IL 60612 USA
[2] Marine Biol Lab, Woods Hole, MA 02543 USA
[3] NYU, Sch Med, Dept Physiol & Neurosci, New York, NY 10016 USA
[4] Univ Sao Paulo, Ribeirao Preto Sch Med, Dept Cell & Mol Biol, BR-14049900 Ribeirao Preto, Brazil
关键词
cytoplasmic dynein; kinesin; Parkinson's disease; synaptic vesicle; caspase;
D O I
10.1073/pnas.0611231104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Parkinson's disease (PD), a late-onset condition characterized by dysfunction and loss of dopaminergic neurons in the substantia nigra, has both sporadic and neurotoxic forms. Neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and its metabolite 1-methyl-4-phenylpyridinium (MPP+) induce PD symptoms and recapitulate major pathological hallmarks of PD in human and animal models. Both sporadic and MPP+-induced forms of PD proceed through a "dying-back" pattern of neuronal degeneration in affected neurons, characterized by early loss of synaptic terminals and axonopathy. However, axonal and synaptic-specific effects of MPP+ are poorly understood. Using isolated squid axoplasm, we show that MPP+ produces significant alterations in fast axonal transport (FAT) through activation of a caspase and a previously undescribed protein kinase C (PKC delta) isoform. Specifically, MPP+ increased cytoplasmic dynein-dependent retrograde FAT and reduced kinesin-1-mediated anterograde FAT. Significantly, MPP+ effects were independent of both nuclear activities and ATP production. Consistent with its effects on FAT, MPP+ injection in presynaptic domains led to a dramatic reduction in the number of membranous profiles. Changes in availability of synaptic and neurotrophin-signaling components represent axonal and synaptic-specific effects of MPP+ that would produce a dying-back pathology. Our results identify a critical neuronal process affected by MPP+ and suggest that alterations in vesicle trafficking represent a primary event in PD pathogenesis. We propose that PD and other neurodegenerative diseases exhibiting dying-back neuropathology represent a previously undescribed category of neurological diseases characterized by dysfunction of vesicle transport and associated with the loss of synaptic function.
引用
收藏
页码:2442 / 2447
页数:6
相关论文
共 67 条
[1]  
ANDERSEN JK, 2001, SCI AGING KNOWLEDGE, pRE1
[2]  
BERNHEIMER H, 1973, J NEUROL SCI, V20, P415, DOI 10.1016/0022-510X(73)90175-5
[3]  
Bertrand E, 2003, FOLIA NEUROPATHOL, V41, P197
[4]   GTP-GAMMA-S INHIBITS ORGANELLE TRANSPORT ALONG AXONAL MICROTUBULES [J].
BLOOM, GS ;
RICHARDS, BW ;
LEOPOLD, PL ;
RITCHEY, DM ;
BRADY, ST .
JOURNAL OF CELL BIOLOGY, 1993, 120 (02) :467-476
[5]   Molecular pathways to neurodegeneration [J].
Bossy-Wetzel, E ;
Schwarzenbacher, R ;
Lipton, SA .
NATURE MEDICINE, 2004, 10 (07) :S2-S9
[6]   Toxin-induced models of Parkinson's disease [J].
Bové J. ;
Prou D. ;
Perier C. ;
Przedborski S. .
NeuroRX, 2005, 2 (3) :484-494
[7]   A MONOCLONAL-ANTIBODY AGAINST KINESIN INHIBITS BOTH ANTEROGRADE AND RETROGRADE FAST AXONAL-TRANSPORT IN SQUID AXOPLASM [J].
BRADY, ST ;
PFISTER, KK ;
BLOOM, GS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (03) :1061-1065
[8]   VIDEO MICROSCOPY OF FAST AXONAL-TRANSPORT IN EXTRUDED AXOPLASM - A NEW MODEL FOR STUDY OF MOLECULAR MECHANISMS [J].
BRADY, ST ;
LASEK, RJ ;
ALLEN, RD .
CELL MOTILITY AND THE CYTOSKELETON, 1985, 5 (02) :81-101
[9]   Regulation of cell apoptosis by protein kinase c δ [J].
Brodie, C ;
Blumberg, PM .
APOPTOSIS, 2003, 8 (01) :19-27
[10]   ASTROCYTES AS A PRIMARY LOCUS FOR THE CONVERSION MPTP INTO MPP [J].
BROOKS, WJ ;
JARVIS, MF ;
WAGNER, GC .
JOURNAL OF NEURAL TRANSMISSION, 1989, 76 (01) :1-12