Upregulation of PKC genes and isozymes in cardiovascular tissues during early stages of experimental diabetes

被引:67
作者
Guo, MZ
Wu, MH
Korompai, F
Yuan, SY
机构
[1] Texas A&M Univ Syst, Dept Surg, Hlth Sci Ctr, Temple, TX 76504 USA
[2] Texas A&M Univ Syst, Dept Med Physiol, Hlth Sci Ctr, Temple, TX 76504 USA
[3] Texas A&M Univ Syst, Cardiovasc Res Inst, Hlth Sci Ctr, Temple, TX 76504 USA
关键词
hyperglycemia; protein kinase C; gene and protein expression; real-time reverse transcription polymerase chain reaction;
D O I
10.1152/physiolgenomics.00125.2002
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The protein kinase C (PKC) pathway has recently been recognized as an important mechanism in the development of diabetic complications including cardiomyopathy and angiopathy. Although an increase in PKC kinase activity has been detected in the cardiovascular system of diabetic patients and animals, it is unclear whether the same pathological condition alters PKC at the transcriptional and translational levels. In this study we assessed quantitatively the mRNA and protein expression profiles of PKC isozymes in the heart and vascular tissues from streptozotocin- induced diabetic pigs. Partial regions of the porcine PKCalpha, beta1, and beta2 mRNAs were sequenced, and real-time RT-PCR assays were developed for PKC mRNA quantification. The results showed a significant increase in the mRNA levels of PKCalpha, beta1, and beta2 in the heart at 4-8 wk of diabetes. In concomitance, the PKCbeta1 and beta2 genes, but not the PKCalpha gene, were upregulated in the diabetic aorta. Correspondingly, there was a significant increase in the protein expression of PKCalpha and beta2 in the heart and PKCbeta2 in the aorta with a time course correlated to that of mRNA expression. In summary, PKCbeta2 was significantly upregulated in the heart and aorta at both the transcriptional and translational levels during early stages of experimental diabetes, suggesting that PKCbeta2 may be a prominent target of diabetic injury in the cardiovascular system.
引用
收藏
页码:139 / 146
页数:8
相关论文
共 44 条
[1]   Insulin resistance in type 2 diabetes: role of fatty acids [J].
Arner, P .
DIABETES-METABOLISM RESEARCH AND REVIEWS, 2002, 18 :S5-S9
[2]   Inhibition of protein kinase Cβ prevents impaired endothelium-dependent vasodilation caused by hyperglycemia in humans [J].
Beckman, JA ;
Goldfine, AB ;
Gordon, MB ;
Garrett, LA ;
Creager, MA .
CIRCULATION RESEARCH, 2002, 90 (01) :107-111
[3]   Increased protein kinase C activity and expression of Ca2+-sensitive isoforms in the failing human heart [J].
Bowling, N ;
Walsh, RA ;
Song, GJ ;
Estridge, T ;
Sandusky, GE ;
Fouts, RL ;
Mintze, K ;
Pickard, T ;
Roden, R ;
Bristow, MR ;
Sabbah, HN ;
Mizrahi, JL ;
Gromo, G ;
King, GL ;
Vlahos, CJ .
CIRCULATION, 1999, 99 (03) :384-391
[4]   Expression of protein kinase C beta in the heart causes hypertrophy in adult mice and sudden death in neonates [J].
Bowman, JC ;
Steinberg, SF ;
Jiang, TR ;
Geenen, DL ;
Fishman, GI ;
Buttrick, PM .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 100 (09) :2189-2195
[5]   Biochemistry and molecular cell biology of diabetic complications [J].
Brownlee, M .
NATURE, 2001, 414 (6865) :813-820
[6]  
Bursell SE, 1997, INVEST OPHTH VIS SCI, V38, P2711
[7]   Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays [J].
Bustin, SA .
JOURNAL OF MOLECULAR ENDOCRINOLOGY, 2000, 25 (02) :169-193
[8]   Protein kinase C isozymes and the regulation of diverse cell responses [J].
Dempsey, EC ;
Newton, AC ;
Mochly-Rosen, D ;
Fields, AP ;
Reyland, ME ;
Insel, PA ;
Messing, RO .
AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2000, 279 (03) :L429-L438
[9]   ACTIVATION OF PROTEIN-KINASE-C IN GLOMERULAR CELLS IN DIABETES - MECHANISMS AND POTENTIAL LINKS TO THE PATHOGENESIS OF DIABETIC GLOMERULOPATHY [J].
DERUBERTIS, FR ;
CRAVEN, PA .
DIABETES, 1994, 43 (01) :1-8
[10]   Oxidative stress and stress-activated signaling pathways: A unifying hypothesis of type 2 diabetes [J].
Evans, JL ;
Goldfine, ID ;
Maddux, BA ;
Grodsky, GM .
ENDOCRINE REVIEWS, 2002, 23 (05) :599-622