Analysis of metal-oxide-based charge generation layers used in stacked organic light-emitting diodes

被引:66
作者
Qi, Xiangfei [1 ]
Li, Ning [1 ]
Forrest, Stephen R. [1 ,2 ,3 ]
机构
[1] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
关键词
charge injection; multilayers; organic light emitting diodes; organic semiconductors; phosphorescence; thermionic emission; tunnelling; vacancies (crystal); valence bands; EFFICIENCY; DEVICES; ELECTROPHOSPHORESCENCE;
D O I
10.1063/1.3275050
中图分类号
O59 [应用物理学];
学科分类号
摘要
We study electron and hole injection in MoO3 charge generation layers (CGLs) commonly used for establishing balanced injection in multilayer stacked organic light-emitting diodes (SOLEDs). A compound CGL consisting of 100-A degrees-thick MoO3 and Li-doped 4,7-diphenyl-1,10-phenanthroline in a 1:1 molar ratio is demonstrated to have a high electron generation efficiency. Charge injection from the compound CGL is modeled based on a two-step process consisting of tunneling-assisted thermionic emission over an injection barrier of (1.2 +/- 0.2) eV and a trap level due to oxygen vacancies at (0.06 +/- 0.01) eV above the MoO3 valence band edge. Peak external quantum efficiencies (EQEs) of (10.5 +/- 0.2)%, (10.1 +/- 0.2)%, (8.6 +/- 0.2)%, and (8.9 +/- 0.2)% are obtained for tris-(phenylpyridine)iridium-based electrophosphorescent OLEDs with indium tin oxide (ITO) anode/CGL cathode, CGL anode/CGL cathode, CGL anode/Al cathode, and ITO anode/Al cathode contacts, respectively. Based on our analysis, a three-element green emitting electrophosphorescent SOLED is demonstrated with a peak forward-viewing EQE=(24.3 +/- 1.0)% and a power efficiency of (19 +/- 1) lm/W.
引用
收藏
页数:8
相关论文
共 34 条
[1]   High-efficiency red electrophosphorescence devices [J].
Adachi, C ;
Baldo, MA ;
Forrest, SR ;
Lamansky, S ;
Thompson, ME ;
Kwong, RC .
APPLIED PHYSICS LETTERS, 2001, 78 (11) :1622-1624
[2]   Nearly 100% internal phosphorescence efficiency in an organic light-emitting device [J].
Adachi, C ;
Baldo, MA ;
Thompson, ME ;
Forrest, SR .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (10) :5048-5051
[3]  
Anderson RL Anderson B.L., 2004, FUNDAMENTALS SEMICON
[4]   Very high-efficiency green organic light-emitting devices based on electrophosphorescence [J].
Baldo, MA ;
Lamansky, S ;
Burrows, PE ;
Thompson, ME ;
Forrest, SR .
APPLIED PHYSICS LETTERS, 1999, 75 (01) :4-6
[5]   Method of source terms for dipole emission modification in modes of arbitrary planar structures [J].
Benisty, H ;
Stanley, R ;
Mayer, M .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1998, 15 (05) :1192-1201
[6]   High-efficiency organic electroluminescent device with multiple emitting units [J].
Chang, CC ;
Hwang, SW ;
Chen, CH ;
Chen, JF .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2004, 43 (9A) :6418-6422
[7]   MIP-type organic solar cells incorporating phthalocyanine/fullerene mixed layers and doped wide-gap transport layers [J].
Drechsel, J ;
Männig, B ;
Gebeyehu, D ;
Pfeiffer, M ;
Leo, K ;
Hoppe, H .
ORGANIC ELECTRONICS, 2004, 5 (04) :175-186
[8]   Organic Mip-diodes by p-doping of amorphous wide-gap semiconductors:: CV and impedance spectroscopy [J].
Drechsel, J ;
Pfeiffer, M ;
Zhou, X ;
Nollau, A ;
Leo, K .
SYNTHETIC METALS, 2002, 127 (1-3) :201-205
[9]   SIMPLIFIED CLOSED-FORM TRAP-ASSISTED TUNNELING MODEL APPLIED TO NITRIDED OXIDE DIELECTRIC CAPACITORS [J].
FLEISCHER, S ;
LAI, PT ;
CHENG, YC .
JOURNAL OF APPLIED PHYSICS, 1992, 72 (12) :5711-5715
[10]   Measuring the efficiency of organic light-emitting devices [J].
Forrest, SR ;
Bradley, DDC ;
Thompson, ME .
ADVANCED MATERIALS, 2003, 15 (13) :1043-1048