An analysis of the exponential decay principle in probabilistic trust models

被引:34
作者
ElSalamouny, Ehab [1 ]
Krukow, Karl Tikjob [2 ]
Sassone, Vladimiro [1 ]
机构
[1] Univ Southampton, ECS, Southampton SO9 5NH, Hants, England
[2] Trifork, Aarhus, Denmark
基金
英国工程与自然科学研究理事会;
关键词
Trust; Computational trust; Probabilistic trust models; Hidden Markov Models; Decay principle; Beta distribution; REPUTATION;
D O I
10.1016/j.tcs.2009.06.011
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Research in models for experience-based trust management has either ignored the problem of modelling and reasoning about dynamically changing principal behaviour, or provided ad hoc solutions to it. Probability theory provides a foundation for addressing this and many other issues in a rigorous and mathematically sound manner. Using Hidden Markov Models to represent principal behaviours, we focus on computational trust frameworks based on the 'beta' probability distribution and the principle of exponential decay, and derive a precise analytical formula for the estimation error they induce. This allows potential adopters of beta-based computational trust frameworks and algorithms to better understand the implications of their choice. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:4067 / 4084
页数:18
相关论文
共 19 条
[1]   STATISTICAL INFERENCE FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS [J].
BAUM, LE ;
PETRIE, T .
ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (06) :1554-&
[2]  
Blaze M., 1999, Secure Internet programming. Security issues for mobile and distributed objects, P185
[3]  
BREMAUD P, 1998, GIBBS FIELDS MONTE C
[4]  
Buchegger S., 2004, P2PEcon 2004
[5]   Using trust for secure collaboration in uncertain environments [J].
Cahill, V ;
Gray, E ;
Seigneur, JM ;
Jensen, CD ;
Chen, Y ;
Shand, B ;
Dimmock, N ;
Twigg, A ;
Bacon, J ;
English, C ;
Wagealla, W ;
Terzis, S ;
Nixon, P ;
Serugendo, GD ;
Carbone, M ;
Krukow, K ;
Nielsen, M .
IEEE PERVASIVE COMPUTING, 2003, 2 (03) :52-61
[6]  
Grimmet G.R., 2001, Probability and Random Processes
[7]  
Horn R. A., 2012, Matrix Analysis
[8]  
Jaynes ET., 2003, Probability Theory
[9]  
Josang A., 2002, PROC 15 BLED ELECT C, V5, P2502
[10]  
Josang A, 2007, ARES 2007: SECOND INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY AND SECURITY, PROCEEDINGS, P112