Porous Polymersomes with Encapsulated Gd-Labeled Dendrimers as Highly Efficient MRI Contrast Agents

被引:82
作者
Cheng, Zhiliang [1 ]
Thorek, Daniel L. J. [1 ]
Tsourkas, Andrew [1 ]
机构
[1] Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA
关键词
INFRARED-EMISSIVE POLYMERSOMES; IN-VIVO; PARAMAGNETIC LIPOSOMES; ENHANCED MRI; BRAIN-TUMORS; BLOOD-VOLUME; MOUSE-BRAIN; DTPA; RELAXIVITY; VESICLES;
D O I
10.1002/adfm.200901253
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The use of nanovesicles with encapsulated Gd as magnetic resonance (MR) contrast agents has largely been ignored due to the detrimental effects of the slow water exchange rate through the vesicle bilayer on the relaxivity of encapsulated Gd. Here, the facile synthesis of a composite MR contrast platform is described; it consists of dendrimer conjugates encapsulated in porous polymersomes. These nanciparticles exhibit improved permeability to water flux and a large capacity to store chelated Gd within the aqueous lumen, resulting in enhanced longitudinal relaxivity. The porous polymersomes, -130 nm in diameter, are produced through the aqueous assembly of the polymers, polyethylene oxide-b-polybutadiene (PBdEO), and polyethylene oxide-b-polycaprolactone (PEOCL). Subsequent hydrolysis of the caprolactone (CL) block resulted in a highly permeable outer membrane. To prevent the leakage of small Gd-chelate through the pores, Gd was conjugated to polyamidoamine (PAMAM) dendrimers via diethylenetriaminepentaacetic acid dianhydride (DTPA dianhydride) prior to encapsulation. As a result of the slower rotational correlation time of Gd-labeled dendrimers, the porous outer membrane of the nanovesicle, and the high Gd payload, these functional nanoparticles are found to exhibit a relaxivity (R7) of 292 109 mm(-1)s(-1) per particle. The polymersomes are alsofound to exhibit unique pharmacokinetics with a circulation half-life of >3.5 h and predominantly renal clearance.
引用
收藏
页码:3753 / 3759
页数:7
相关论文
共 53 条
[1]   Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug [J].
Ahmed, Fariyal ;
Pakunlu, Refika I. ;
Brannan, Aaron ;
Bates, Frank ;
Minko, Tamara ;
Discher, Dennis E. .
JOURNAL OF CONTROLLED RELEASE, 2006, 116 (02) :150-158
[2]  
Aime S, 2002, ANGEW CHEM INT EDIT, V41, P1017, DOI 10.1002/1521-3773(20020315)41:6<1017::AID-ANIE1017>3.0.CO
[3]  
2-P
[4]   Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI [J].
Amirbekian, Vardan ;
Lipinski, Michael J. ;
Briley-Saebo, Karen C. ;
Amirbekian, Smbat ;
Aguinaldo, Juan Gilberto S. ;
Weinreb, David B. ;
Vucic, Esad ;
Frias, Juan C. ;
Hyafil, Fabien ;
Mani, Venkatesh ;
Fisher, Edward A. ;
Fayad, Zahi A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (03) :961-966
[5]   Persistent contrast enhancement by sterically stabilized paramagnetic liposomes in murine melanoma [J].
Bertini, I ;
Bianchini, F ;
Calorini, L ;
Colagrande, S ;
Fragai, M ;
Franchi, A ;
Gallo, O ;
Gavazzi, C ;
Luchinat, C .
MAGNETIC RESONANCE IN MEDICINE, 2004, 52 (03) :669-672
[6]   LONG-CIRCULATING BLOOD-POOL IMAGING AGENTS [J].
BOGDANOV, A ;
WEISSLEDER, R ;
BRADY, TJ .
ADVANCED DRUG DELIVERY REVIEWS, 1995, 16 (2-3) :335-348
[7]   Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications [J].
Caravan, P ;
Ellison, JJ ;
McMurry, TJ ;
Lauffer, RB .
CHEMICAL REVIEWS, 1999, 99 (09) :2293-2352
[8]   Paramagnetic porous polymersomes [J].
Cheng, Zhiliang ;
Tsourkas, Andrew .
LANGMUIR, 2008, 24 (15) :8169-8173
[9]  
Chu WJ, 1997, NMR BIOMED, V10, P87, DOI 10.1002/(SICI)1099-1492(199704)10:2<87::AID-NBM438>3.0.CO
[10]  
2-T